Monitorización del contenido de fósforo del olivo mediante robot terrestre
- Noguera, Miguel 1
- Millan, Borja 2
- Moro, Rocio
- Andújar, José Manuel 1
- 1 Centro de Investigación en Tecnología, Energía y Sostenibilidad, Universidad de Huelva
- 2 Departamento de Ingeniería Eléctrica, Electrónica, Informática y de Sistemas, Universidad de Oviedo
- Cruz Martín, Ana María (coord.)
- Arévalo Espejo, V. (coord.)
- Fernández Lozano, Juan Jesús (coord.)
ISSN: 3045-4093
Year of publication: 2024
Issue: 45
Type: Article
Abstract
The olive grove is a crop of great importance for the agronomic sector in the countries of the Mediterranean basin. In the last decades, the olive sector has undergone modernisation in order to increase the profitability and productivity of its crop systems. In this context, management approaches based on precision agriculture are showing promising potential. In this sense, the present work shows a methodology for the characterisation of leaf P content in super-intensive olive orchards. The proposed method is based o nartificial neural networks fed with spectral information extracted from images acquired by a terrestrial robot with autonomous navigation capabilities. To evaluate the proposed methodology, an experimental approach was defined based on exposing a plot of super-intensive olive trees to differential fertigation treatments to generate variability in leaf P content. The correlation index between the reference values obtained by chemical analysis and the response of the developed model (R2 = 0.72) suggests the suitability of the proposed methodology.
Bibliographic References
- Barranco Navero, Diego, Fernandez Escobar, Ricardo, Rallo Romero, L. 2017. El cultivo del olivo. Mundi-Prensa Libros, Madrid.
- Berger, K., Verrelst, J., Féret, J. B., Wang, Z., Wocher, M., Strathmann, M., Danner, M., Mauser, W., Hank, T., 2020. Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sensing of Environment, 242, 111758. DOI: 10.1016/j.rse.2020.111758 DOI: https://doi.org/10.1016/j.rse.2020.111758
- Gómez-Casero, M. T., López-Granados, F., Peña-Barragán, J. M., Jurado-Expósito, M., García-Torres, L., Fernández-Escobar, R., 2007. Assessing nitrogen and potassium deficiencies in olive orchards through discriminant analysis of hyperspectral data. Journal of the American Society for Horticultural Science, 132(5), 611–618. DOI: 10.21273/jashs.132.5.611 DOI: https://doi.org/10.21273/JASHS.132.5.611
- Hank, T. B., Berger, K., Bach, H., Clevers, J. G. P. W., Gitelson, A., Zarco-Tejada, P., Mauser, W. 2019. Spaceborne Imaging Spectroscopy for Sustainable Agriculture: Contributions and Challenges. Surveys in Geophysics, 40, 515–551. DOI: 10.1007/s10712-018-9492-0 DOI: https://doi.org/10.1007/s10712-018-9492-0
- Lo Bianco, R., Proietti, P., Regni, L., & Caruso, T., 2021. Planting Systems for Modern Olive Growing: Strengths and Weaknesses. Agriculture 2021. 494, 11(6). DOI: 10.3390/AGRICULTURE11060494 DOI: https://doi.org/10.3390/agriculture11060494
- Michael Thompson, J. N. W., 2012. Handbook of Inductively Coupled Plasma Spectrometry.Blackie, New York. DOI: 10.1007/978-1-4613-0697-9 DOI: https://doi.org/10.1007/978-1-4613-0697-9
- Roma, E., Catania, P., 2022. Precision Oliviculture: Research Topics, Challenges, and Opportunities—A Review. Remote Sensing, 14(7), 1668. DOI: 10.3390/rs14071668 DOI: https://doi.org/10.3390/rs14071668
- Rotbart, N., Schmilovitch, Z., Cohen, Y., Alchanatis, V., Erel, R., Ignat, T., Shenderey, C.. Dag, A.,Yermiyahu, U., 2013. Estimating olive leaf nitrogen concentration using visible and near-infrared spectral reflectance. Biosystems Engineering, 114(4), 426–434. DOI: 10.1016/j.biosystemseng.2012.09.005 DOI: https://doi.org/10.1016/j.biosystemseng.2012.09.005
- Rubio-Delgado, J., Carlos, ·, Pérez, J., Vega-Rodríguez, M. A., Es, J., 2020. Predicting leaf nitrogen content in olive trees using hyperspectral data for precision agriculture. 22, 1–21. DOI: 10.1007/s11119-020-09727-1 DOI: https://doi.org/10.1007/s11119-020-09727-1
- Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.-P., Lewis, P., North, P., Moreno, J., 2019. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surveys in Geophysics, 40(3), 589–629. DOI: 10.1007/s10712-018-9478-y DOI: https://doi.org/10.1007/s10712-018-9478-y