Inteligencia artificial y enseñanza en Ingenieríauna revisión sistemática de la literatura

  1. Ceada-Garrido, Yolanda 1
  2. Barragán, Antonio Javier 1
  3. Enrique, Juan Manuel 1
  4. Aquino, Arturo 1
  5. Martínez Bohórquez, Miguel Ángel 1
  6. Andújar, José Manuel 1
  1. 1 Universidad de Huelva
    info
    Universidad de Huelva

    Huelva, España

    ROR https://ror.org/03a1kt624

    Geographic location of the organization Universidad de Huelva
Journal:
Jornadas de Automática
  1. Mulero Martínez, Juan Ignacio (coord.)
  2. Baños Torrico, Alfonso (coord.)
  3. Torres Sánchez, Roque (coord.)

ISSN: 3045-4093

Year of publication: 2025

Issue: 46

Type: Article

DOI: 10.17979/JA-CEA.2025.46.12180 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

Abstract

The arrival of Generative Artificial Intelligence (GenAI) in education has meant the beginning of a new educational revolution, generating the need to evaluate both its benefits and possible challenges in the training of future professionals. This research aims to analyze the educational experiences that have introduced this technology in higher engineering education, in order to know its integration process, its potentials and main challenges. From a systematic review of the literature, it is concluded that GenAI stands out for its ability to adapt to the characteristics of the students. However, its use in engineering education is advancing slowly, evidencing the need for effective integration into the curricula, to promote good practices and contribute to the advancement of society.

Bibliographic References

  • Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology: Theory and Practice, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616
  • Baker, J. D. (2016). The Purpose, Process, and Methods of Writing a Literature Review. AORN Journal, 103(3), 265–269. https://doi.org/10.1016/j.aorn.2016.01.016
  • Bernabei, M., Colabianchi, S., Falegnami, A., & Costantino, F. (2023). Students’ use of large language models in engineering education: A case study on technology acceptance, perceptions, efficacy, and detection chances. Computers and Education: Artificial Intelligence, 5(October), 100172. https://doi.org/10.1016/j.caeai.2023.100172
  • Bobula, M. (2024). Generative artificial intelligence (AI) in higher education: a comprehensive review of challenges, opportunities, and implications. Journal of Learning Development in Higher Education, 30. https://doi.org/10.47408/jldhe.vi30.1137
  • Borges, B., Foroutan, N., Bayazit, D., Sotnikova, A., Montariol, S., Nazaretzky, T., Banaei, M., Sakhaeirad, A., Servant, P., Neshaei, S. P., Frej, J., Romanou, A., Weiss, G., Mamooler, S., Chen, Z., Fan, S., Gao, S., Ismayilzada, M., Paul, D., … Bosselut, A. (2024). Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants. 1(49), 1–9. https://doi.org/10.1073/pnas.2414955121/-/DCSupplemental.Published
  • Caccavale, F., Gargalo, C. L., Gernaey, K. V., & Krühne, U. (2024). Towards Education 4.0: The role of Large Language Models as virtual tutors in chemical engineering. Education for Chemical Engineers, 49(July), 1–11. https://doi.org/10.1016/j.ece.2024.07.002
  • Ciolacu, M. I., Marghescu, C., Mihailescu, B., & Svasta, P. (2024). Does Industry 5.0 Need an Engineering Education 5.0? Exploring Potentials and Challenges in the Age of Generative AI. IEEE Global Engineering Education Conference, EDUCON, 1–10. https://doi.org/10.1109/EDUCON60312.2024.10578712
  • Cui, Y., Chen, F., & Shiri, A. (2020). Scale up predictive models for early detection of at-risk students: a feasibility study. Information and Learning Science, 121(3–4), 97–116. https://doi.org/10.1108/ILS-05-2019-0041
  • Fernández, L. R., Laura, A., Mena, F., Patricia, M., Magaña, T., Antonio, M., Magaña, R., Antonio, M., & Fernández, R. (2024). INTELIGENCIA ARTIFICIAL EN LA EDUCACION : MODELO DE LENGUAJE DE GRAN TAMAÑO ( LLM ) COMO RECURSO EDUCATIVO ARTIFICIAL INTELLIGENCE IN EDUCATION : LARGE LANGUAGE MODEL ( LLM ) AS AN EDUCATIONAL RESOURCE. Llm, 157–164.
  • García-Peñalvo, F., & Vázquez-Ingelmo, A. (2023). What Do We Mean by GenAI? A Systematic Mapping of The Evolution, Trends, and Techniques Involved in Generative AI. International Journal of Interactive Multimedia and Artificial Intelligence, 8(4), 7. https://doi.org/10.9781/ijimai.2023.07.006
  • Garg, A., Nisumba Soodhani, K., & Rajendran, R. (2025). Enhancing data analysis and programming skills through structured prompt training: The impact of generative AI in engineering education. Computers and Education: Artificial Intelligence, 8(October 2024), 100380. https://doi.org/10.1016/j.caeai.2025.100380
  • Iosup, A., & Epema, D. (2014). An experience report on using gamification in technical higher education. SIGCSE 2014 - Proceedings of the 45th ACM Technical Symposium on Computer Science Education, 2008, 27–32. https://doi.org/10.1145/2538862.2538899
  • Keith, M., Keiller, E., Windows-Yule, C., Kings, I., & Robbins, P. (2025). Harnessing generative AI in chemical engineering education: Implementation and evaluation of the large language model ChatGPT v3.5. Education for Chemical Engineers, 51(July 2024), 20–33. https://doi.org/10.1016/j.ece.2025.01.002
  • King, M. R., Abdulrahman, A. M., Petrovic, M. I., Poley, P. L., Hall, S. P., Kulapatana, S., & Lamantia, Z. E. (2024). Incorporation of ChatGPT and Other Large Language Models into a Graduate Level Computational Bioengineering Course. Cellular and Molecular Bioengineering, 17(1), 1–6. https://doi.org/10.1007/s12195-024-00793-3
  • Knoth, N., Tolzin, A., Janson, A., & Leimeister, J. M. (2024). AI literacy and its implications for prompt engineering strategies. Computers and Education: Artificial Intelligence, 6(December 2023), 100225. https://doi.org/10.1016/j.caeai.2024.100225
  • Menekse, M. (2023). Envisioning the future of learning and teaching engineering in the artificial intelligence era: Opportunities and challenges. Journal of Engineering Education, 112(3), 578–582. https://doi.org/10.1002/jee.20539
  • Obster, F., Brand, J., Ciolacu, M., & Humpe, A. (2023). Improving Boosted Generalized Additive Models with Random Forests: A Zoo Visitor Case Study for Smart Tourism. Procedia Computer Science, 217, 187–197. https://doi.org/10.1016/j.procs.2022.12.214
  • Peláez-Sánchez, I. C., Velarde-Camaqui, D., & Glasserman-Morales, L. D. (2024). The impact of large language models on higher education: exploring the connection between AI and Education 4.0. Frontiers in Education, 9. https://doi.org/10.3389/feduc.2024.1392091
  • Pesovski, I., Santos, R., Henriques, R., & Trajkovik, V. (2024). Generative AI for Customizable Learning Experiences. Sustainability (Switzerland) , 16(7), 1–23. https://doi.org/10.3390/su16073034
  • Sawalha, G., Taj, I., & Shoufan, A. (2024). Analyzing student prompts and their effect on ChatGPT’s performance. Cogent Education, 11(1). https://doi.org/10.1080/2331186x.2024.2397200
  • Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., Altman, D. G., Booth, A., Chan, A. W., Chang, S., Clifford, T., Dickersin, K., Egger, M., Gøtzsche, P. C., Grimshaw, J. M., Groves, T., Helfand, M., … Whitlock, E. (2015). Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. BMJ (Online), 349(January), 1–25. https://doi.org/10.1136/bmj.g7647
  • Shen, Y. (2024). Future jobs: analyzing the impact of artificial intelligence on employment and its mechanisms. Economic Change and Restructuring, 57(2), 34. https://doi.org/10.1007/s10644-024-09629-6
  • Soboleva, E. V., Gorev, P. M., Shadrina, N. N., & Shilova, Z. V. (2024). Using generative neural networks when training digital engineers to improve the quality of their training. Perspektivy Nauki i Obrazovania, 71(5), 662–679. https://doi.org/10.32744/pse.2024.5.39
  • Song, T., Zhang, H., & Xiao, Y. (2024). A High-Quality Generation Approach for Educational Programming Projects Using LLM. IEEE Transactions on Learning Technologies, 17, 2242–2255. https://doi.org/10.1109/TLT.2024.3499751
  • Viveros-Muñoz, R., Carrasco-Sáez, J., Contreras-Saavedra, C., San-Martín-Quiroga, S., & Contreras-Saavedra, C. E. (2025). Does the Grammatical Structure of Prompts Influence the Responses of Generative Artificial Intelligence? An Exploratory Analysis in Spanish. Applied Sciences (Switzerland), 15(7), 1–20. https://doi.org/10.3390/app15073882
  • Wang, X., Chan, T. M., & Tamura, A. A. (2025). A learning module for generative AI literacy in a biomedical engineering classroom. Frontiers in Education, 10(March), 1–7. https://doi.org/10.3389/feduc.2025.1551385
  • Yik, B. J., & Dood, A. J. (2024). ChatGPT Convincingly Explains Organic Chemistry Reaction Mechanisms Slightly Inaccurately with High Levels of Explanation Sophistication. Journal of Chemical Education, 101(5), 1836–1846. https://doi.org/10.1021/acs.jchemed.4c00235