Influencia del pH y de la fuerza iónica sobre la gelificación térmica de proteínas de la yema de huevo

  1. Carmona, José A.
  2. Cordobés Carmona, Felipe
  3. Guerrero Conejo, Antonio
  4. Martínez, Inmaculada
  5. Partal López, Pedro
Revista:
Grasas y aceites

ISSN: 0017-3495 1988-4214

Año de publicación: 2007

Volumen: 58

Número: 3

Páginas: 289-296

Tipo: Artículo

DOI: 10.3989/GYA.2007.V58.I3.185 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Grasas y aceites

Resumen

En este trabajo se estudiaron las transiciones térmicas de la yema de huevo usando técnicas de calorimetría diferencial de barrido (DSC) y ensayos viscoelásticos lineales, más concretamente, ensayos de cizalla oscilatoria de baja amplitud (SAOS). Se analizó la influencia de la composición (pH, concentración de electrolito y tipo). Los resultados obtenidos mediante calorimetría diferencial de barrido sugieren una continua evolución en el proceso de desnaturalización de la proteína, el cual depende de variables como el pH y la concentración de electrolito. Los ensayos calorimétricos se complementan con los reológicos. Así, la realización de rampas de temperatura usando medidas ¿in situ¿ de cizalla oscilatoria, permite determinar la evolución de las funciones viscoelásticas durante el proceso de gelificación, poniéndose de manifiesto un notable incremento de dichas funciones, que va a depender del pH, fuerza iónica y tipo de electrolito. Los ensayos de cizalla oscilatoria fueron igualmente empleados para la obtención de los espectros mecánicos de las dispersiones y geles de yema de huevo en función de su composición. La influencia del pH y fuerza iónica sobre las propiedades viscoelásticas lineales puede ser explicada a partir del modelo de formación de geles para proteínas globulares.

Referencias bibliográficas

  • Anton M, Beaumal V, Gandermer G. 2000. Adsorption of the oil-water interface and emulsifying properties of native granules from egg yolk: effect o aggregate state. Food Hydrocolloids 14, 385-393. doi:10.1016/S0268-005X(00)00009-6
  • Anton M, Martinet V, Dalgalarrondo M, Beaumal V, David- Briand E, Rabesona H. 2003. Chemical and structural characterization of low-density lipoproteins purified from hen egg yolk. Food Chem. 83, 175-183. doi:10.1016/S0308-8146(03)00060-8
  • Boye IJ, Ma CY, Harwalkar VR. 1997a. Food Proteins and their Applications, en Damodaran S., Paraf A. (Eds.), 25-56. Marcel Dekker., New York.
  • Boye JI, Alli I, Ismail AA. 1997b. Use of differential scanning calorimetry and infrared spectroscopy in the study of thermal and structural stability of lactalbumin, A and B. J. Agric. Food Chem 45, 1116-1125. doi:10.1021/jf960360z
  • Burley RW, Cook WH. 1961. Isolation and composition of avian egg yolk granules and their constituents alfaand beta-lipovitelins. Can. J. Biochem. Physiol. 39, 1295-1307.
  • Causeret D, Matringe E, Lorient D. 1991. Ionic strength and pH effects on composition and microstructure of yolk granules. J. Food Sci. 56, 1532-1536. doi:10.1111/j.1365-2621.1991.tb08634.x
  • Clark AH. 1998. Gelation of Globular Proteins, en Hill SE., Ledward DA., Mitchell JR. (Ed.) Functional Properties of Food Macromolecules, 2nd Ed., 77-142. Aspen Publishers Inc., Gaithersburg.
  • Clark AH, Kavanagh GM, Ross-Murphy SB. 2001. Globular protein gelation-theory and experiment. Food Hydrocollids 15, 383-400. doi:10.1016/S0268-005X(01)00042-X
  • Cordobés F, Partal P, Guerrero A. 2004. Rheology and microstructure of heat-induced egg yolk gels. Rheol. Acta 43 (2), 184-195. doi:10.1007/s00397-003-0338-3
  • Damodaran S, Kinsella JE. 1982. Food Protein Deterioration: Mechanisms and Function ality, en Cherry JP. (Ed.) ACS Symp Ser. 206, 327. Amer. Chem. Soc., Washington DC.
  • Fernández-Martín F, Fernández P, Carballo J, Jiménez Colmenero F. 1997. Pressure/Heat combinations on pork meat batters: protein thermal behavior and product rheolog ical properties. J. Agr. Food Chem. 45, 4440-4445. doi:10.1021/jf9702297
  • Foegeding EA, Davis JP, Doucet D, McGuffey MK. 2001. Advances in modifying and understanding whey protein functionality. Trends Food Sci. Technol. 13, 151-159. doi:10.1016/S0924-2244(02)00111-5
  • Gosal WS, Ross-Murphy SB. 2000. Globular protein gelation. Curr. Opin. Colloid Interface Sci. 5, 209-215. doi:10.1016/S1359-0294(00)00057-1
  • Harrison LJ, Cunningham FE. 1986. Influence of frozen storage time on properties of salted yolk and its functionality in mayonnaise. J. Food Quality 9, 167-174. doi:10.1111/j.1745-4557.1986.tb00786.x
  • Hofmeister F. 1888. Zur lehre von der wirkung der salze. II. Arch. Exp. Pathol. Pharmakol. 24, 247-260. doi:10.1007/BF01918191
  • Kiosseoglou VD, Sherman P. 1983a. The influence of egg yolk lipoproteins on the rheology and stability of O/W emulsions and mayonnaise. Colloid Polym. Sci. 261, 502-507. doi:10.1007/BF01419834
  • Kiosseoglou VD, Sherman P. 1983b. The rheological conditions associated with judgment of pourability and spreadability of salad dressing. J. Tex. Stu. 14, 277-282. doi:10.1111/j.1745-4603.1983.tb00350.x
  • Kiosseoglou VD. 2003. Functional properties of egg yolk. Proceedings of the Xth European Symposium on the quality of eggs and egg products, France, 3, 302-311.
  • Koidis A, Paraskevopoulou A, Kiosseoglou V. 2002. Fracture and textural properties of low fat egg yolk gels containing emulsion droplets. Food Hydrocolloids 16, 673-678.
  • Le Denmat M, Anton M, Beaumal V. 2000. Characterisation of emulsion properties and of interface composition in O/W emulsion prepared with hen egg yolk, plasma and granules. Food Hydrocolloids 14, 539-549. doi:10.1016/S0268-005X(00)00034-5
  • Martin WG, Augustyniak J, Cook WH. 1964. Fractionation and characterizacion of the low-density lipoproteins of hen’s egg yolk. Biochimica et Biophysica Acta 84, 714-720.
  • Nishinari K, Zhang HB, Ikeda S. 2000. Hydrocolloid gels of polysaccharides and proteins. Curr. Opin. Colloid Interface Sci. 5, 195-201. doi:10.1016/S1359-0294(00)00053-4
  • Paraskevopoulou A, Kiosseoglou V. 1997. Texture profile analysis of heat-formed gels and cakes prepared with low cholesterol egg yolk concentrates. J. Food Sci. 62, 208-211. doi:10.1111/j.1365-2621.1997.tb04401.x
  • Paraskevopoulou A, Kiosseoglou V, Alevisopoulos S, Kasapis S. 2000. Small deformation measurements of single and mixed gels of low cholesterol yolk and egg white. J. Texture Studies 31, 225-44. doi:10.1111/j.1745-4603.2000.tb01418.x
  • Puppo MC, Añon MC. 1998. Structural properties of heatinduced soy protein gels as affected by ionic strength and pH. J. Agric. Food Chem. 46, 3583-3589. doi:10.1021/jf980006w
  • Puppo MC, Añon MC. 1999a. Soybean protein dispersions at acid pH thermal and rheological properties. J. Food Sci. 64, 50-56. doi:10.1111/j.1365-2621.1999.tb09859.x
  • Puppo MC, Añon MC. 1999b. Rheological properties of acidic soybean protein gels: salt addition effect. Food Hydrocolloid 13, 167-176. doi:10.1016/S0268-005X(98)00079-4
  • Resch JJ, Daubert CR, Foegeding EA. 2005. Beta-Lactoglobulin gelation and derivatization: effect of acidulant selection and heating conditions. J. Food Sci. 70, C79- C86.
  • Ross-Murphy SB. 1991. Physical gelation of synthetic and biological macromolecules, en DeRossi D, Kajiwara K, Osada Y, Yamauchi A (Eds.) Polymer Gels: Fundamentals and Biomedical Applications, 21-40. Plenum Press, New York.
  • Sánchez C, Burgos J. 1997. Gelation of sunflower globulin hydrolysates:rheological and calorimetric studies. J. Agr. Food Chem. 45, 2407-2412. doi:10.1021/jf960867+
  • Shenstone FS. 1968. The gross composition, chemistry, and physicalchemical basis organization of the yolk and white, en Carter TC. (Eds.) Egg Quality: A study of the Hen’s Egg, 26-66. Oliver and Boyd., Edinburgh.