Ataque del anhídrido carbónico y el ácido sulfhídrico sobre pastas de cemento API clase H expuestas a aguas de formación salina

  1. Márquez Martínez, Gonzalo
  2. Alejandre Sánchez, Francisco Javier
  3. Martín del Río, Juan Jesús
  4. Arribas de Paz, Ricardo
  5. Blasco-López, Francisco-Javier
Revista:
Materiales de construcción

ISSN: 0465-2746

Año de publicación: 2011

Volumen: 61

Número: 303

Páginas: 371-384

Tipo: Artículo

Otras publicaciones en: Materiales de construcción

Resumen

Se simuló la acción agresiva de los denominados iones fundamentales (sulfato, cloruro y magnesio) y los gases agrios presentes en el gas natural (CO2 y H2S) sobre un cemento API clase H utilizado en pozos gasíferos a presión y temperatura elevadas, al objeto de observar sus alteraciones fisicoquímicas por la acción combinada de tales gases y las aguas de formación. Se prepararon varias probetas del material cementante para su inmersión en disoluciones neutras, conteniendo los iones fundamentales en concentraciones fijas, dentro de reactores tipo Parr. Se analizaron durante más de dos meses una serie de disoluciones en contacto con el cemento utilizado; así como, mediante DRX, la evolución de la mineralogía de dicho material entre los 14 y los 60 días. Los principales efectos de ambos gases, en conjunto o por separado, sobre la durabilidad del cemento fueron, respectivamente, la formación de carbonato cálcico y la lixiviación de algunos componentes

Referencias bibliográficas

  • (1) Kuijvenhoven, C., Bostock, A., Chappell, D., Noirot, J., Khan A.: Use of Nitrate to Mitigate Reservoir Souring in Bonga Deepwater Development Offshore Nigeria. SPE International Symposium on Oilfield Chemistry, The Woodlands, Texas, (2005).
  • (2) Krilov, Z., Loncaric, B., Miksa Z.: Investigation of a Long- Term Cement Deterioration Under a High-Temperature, Sour Gas Downhole Environme, p.9, SPE International Symposium on Formation Damage Control, Lafayette, Louisiana, (2000).
  • (3). Drever, J.I: The geochemistry of natural waters, surface and groundwater environments, pp. 4-9, Prentice Hall. Englewood Cliffs. New York, (1997).
  • (4) Hunt, J.: Petroleum Geochemistry and Geology, Second edition, p.743, W.H. Freeman and Company. New York, (1996).
  • (5). Taylor, H.F.: Cement Chemistry, pp 357-359, Academic Press, Second edition. London, (1998).
  • (6) Nelson, B.E., Guillot, D.: Well cementing, 2nd edition. Schlumberger Ed. Houston, (2006).
  • (7) Van Gerven, T., Van Baelen, D., Dutré,V., Vandecasteele, C.: “Influence of carbonation and carbonation methods on leaching of metals from mortars”, Cement and Concrete Research, Vol. 34, (2004), pp. 149-156. doi:10.1016/S0008-8846(03)00255-2
  • (8) Noik, C., Rivereau, A.,: Oilwell Cement Durability, p. 6, SPE Annual Technical Conference and Exhibition. Houston, Texas, (1999).
  • (9) Jacquemet, N., Pironon, J., Caroli, E.: “A new experimental procedure for simulation of SH2+CO2 geological storage”, Oil and gas Sci. Technology Rev., Vol. 60, (2005): pp. 193-203.
  • (10) Ehtesham, S., Rasheeduzzafar, H., Al-Gahtani, A.S.: “Influence of sulphates on chloride binding in cements”, Cement and Concrete Research, Vol. 24, (1994), pp. 8-24. doi:10.1016/0008-8846(94)90078-7
  • (11) Björn, J., Utgennant, P.: “Microestructural changes caused by carbonatation of cement mortar”, Cement and Concrete Research, Vol. 31, (2001), pp. 925-931. doi:10.1016/S0008-8846(01)00498-7
  • (12) Hewlett, P.C.: Lea’s chemistry of cement and concrete, fourth edition, pp 802, Arnold Ed. London, (1998).
  • (13) API Specification 10A, Specification for cements and materials for well cementing. American Petroleum Institute Publishing Services. Washington D.C., (2002).
  • (14) API Recommended Practice 10B, Recommended practice for testing well cements. American Petroleum Institute Publishing Services. Washington D.C., (2005).
  • (15) Barrios, J.: Preparación y estudio de un cemento PAS a partir de albero de Alcalá de Guadaira (Sevilla), pp. 97-98, Tesis Doctoral, Universidad de Sevilla. Sevilla, (1975).
  • (16) Rodier, J.: Análisis de aguas: aguas naturales, residuales, marinas; química, fisicoquímica, bacteriología y biología, p. 23, Editorial Omega. Madrid, (1998).
  • (17) Rosenbauer, R., Koksalan, T.: Experimental determination of the solubility of CO2 in electrolytes: application to CO2 sequestration in deep-saline aquifers. The Geological Society of America. Denver Annual Meeting, (2002).
  • (18) Marchand, J., Samson, E., Maltais, Y.: “Theorical analysis of the effect of weak sodium sulfate solutions on the durability of concrete”, Cement and Concrete Comp., Vol. 24, (2002), pp. 317-329. doi:10.1016/S0958-9465(01)00083-X
  • (19) Santhanam, M., Cohen, M.D., Olek, J.: “Mechanism of sulfate attack, a fresh look”, Cement and Concrete Research, Vol. 32, (2002), pp. 915-921.
  • (20) Skalny, J., Marchand, J.: Sulphate attack on concrete revisited. Proceedings of Kurdowski, pp. 171-188, Symposium on Science of Cement and Concrete. Krakow, (2001).
  • (21) Birnin-Yauri, U.A., Glasser, F.P.: “Friedel’s salt, its solutions and their role in chloride binding”, Cement and Concrete Research, Vol. 28, (1998), pp. 1713-1723. doi:10.1016/S0008-8846(98)00162-8
  • (22) Feldman, R.F., Cheng-Yi, H.: “Resistance of mortars containing silica fume to attack by a solution containing chlorides”, Cement and Concrete Research, Vol. 15, (1985), pp. 943-952. doi:10.1016/0008-8846(85)90083-3
  • (23) Zhang, F., Zhou, Z., Lou Z.: Solubility product and stability of ettringite, pp. 88-93, Seventh International Congress on the Chemistry of Cement. Paris, (1980).
  • (24) Martín-del-Río, J.J., Márquez, G., Alejandre, F.J., Hernández, M.E.: “Durability of API class B cement pastes exposed to aqueous solutions containing chloride, sulphate and magnesium ions”, Materiales de Construcción, Vol. 58, (2008), pp. 15-26.
  • (25) Rechendeg, W.: “The effect of magnesium on concrete”, ZKG International, Vol. 49, (1996), pp. 44-56.
  • (26) Shen, J.C., Pye, D.S.: Effects of CO2 attack on cement in high-temperature applications, p. 8, SPE/IADC Drilling Conference. New Orleans, Louisiana, (1989).
  • (27) Skalny, J., Marchand, J., Odler. I.: Sulphate attack on concrete, chemistry and physics of cement paste, pp. 22-174, Modern Concrete Technology. New York, (2001).
  • (28) Anstice, D., Page, C., Page, M.: “The pore solution phase of carbonated cement pastes”, Cement and Concrete Research, Vol. 35, (2005), pp. 377-383. doi:10.1016/j.cemconres.2004.06.041
  • (29) Welcher, F. J., Hahn, R.: Semimicro qualitative analysis, pp. 225-228, Van Nostrand Reinhold Book. Nueva Cork, (1965).
  • (30) Ayora, C., Chichón, S., Aguado, A., Guirado, F.: “Weathering of iron sulfides and concrete alteration: thermodynamic model and observation in dams from Central Pyrenees, Spain”, Cement and Concrete Research, Vol. 28, (1998), pp. 1223-1235. doi:10.1016/S0008-8846(98)00137-9
  • (31) Rezola, J.: Características y correcta aplicación de los diversos tipos de cemento, p 56, Editores Técnicos Asociados S.A. Barcelona, (1976).
  • (32) Chen, J., Thomas, J., Jennings, H.: “Decalcification shrinkage of cement paste”, Cement and Concrete Research, Vol. 36, (2006), pp. 801-809. doi:10.1016/j.cemconres.2005.11.003
  • (33) Greenwood, N.N., Earnshaw, A.: Chemistry of the elements, second edition, pp 652-683, Elsevier Science. Oxford, (2003).
  • (34) Ming-Te, L., Shieng-Min, L.: “Modeling the transport of multiple corrosive chemicals in concrete structures: Synergetic effect study”, Cement and Concrete Research, Vol. 33, (2003), pp. 1917-1924. doi:10.1016/S0008-8846(03)00081-4
  • (35) Nasr-El-Din, H., Al-Humaidan, A., Fadhel, B., Frenier, W., Hill. D.: Investigation of Sulfide Scavengers in Well-Acidizing Fluid, pp. 229-235, SPE International Symposium on Formation Damage Control. Lafayette, Louisiana, (2000).