Estudio del uso de Ontologías para la Expansión de Consultas en Recuperación de Imágenes en el Dominio Biomédico
- Maña López, Manuel Jesús
- Crespo, Mariano
- Mata Vázquez, Jacinto
ISSN: 1135-5948
Year of publication: 2011
Issue: 47
Pages: 39-46
Type: Article
More publications in: Procesamiento del lenguaje natural
Abstract
The existence of huge collections of medical images in scientific repositories and hospital databases has generated increasing interest in the access to this information. In this paper we address this problem focusing on image retrieval based on textual information related to the image. The initial hypothesis is that query expansion could improve the effectiveness of image retrieval systems. In this proposal, we have used several information elements contained in MeSH and UMLS ontologies. The expansion has been carried out at both term and concept levels. For the experiment we have used the document collection ImageCLEF 2009. The results show a slight increase in MAP and a more significant difference when the evaluation is performed using the F-measure. The final conclusion is that the query expansion is not sufficient to achieve a substantial improvement in the effectiveness of this type of information retrieval systems.
Bibliographic References
- Bodenreider, O. 2004. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Research, 32(2004) 267–270.
- Díaz, M.C., M.A. García, M.T. Martín, L.A. Ureña y A. Montejo. 2009a. Query Expansion on Medical Image Retrieval: MeSH vs. UMLS. Evaluating Systems for Multilingual and Multimodal Information Access. Lecture Notes in Computer Science. Volumen 5706/2009, 732-735.
- Díaz, M.C., M.T. Martín y L.A. Ureña. 2009b. Query expansion with a medical ontology to improve a multimodal information retrieval. Computers in Biology and Medicine, 4, 396-403.
- Hearst, M., A. Divoli, H. Guturu, A. Ksikes, P. Nakov, M.A. Wooldridge y J. Ye. 2007. BioText Search Engine: beyond abstract search. Bioinformatics 23(16): 2196-2197.
- Jimeno, A., R. Berlanga y D. Rebholz. 2010. Ontology refinement for improved information retrieval. Information Processing & Management, 46(4), 426-435.
- Kahn, C.H. Jr. y C. Thao. 2007. GoldMiner: A Radiology Image Search Engine. American Journal of Roentgenology 188:1475-1478.
- Lu, Z., W. Kim y W. Wilbur. 2009. Evaluation of query expansion using MeSH in PubMed. Information Retrieval, Vol. 12, No. 1, pp.69-80.
- Müller, H., J. Kalpathy–Cramer, I. Eggel, S. Bedrick, S. Radhouani, B. Bakke, C.E. Kahn y W. Hersh. 2010. Overview of the CLEF 2009 Medical Image Retrieval Track. Lecture Notes in Computer Science, Volume 6242/2010, 72-84.
- Nelson, S.J., D. Johnston y B.L. Humphreys. 2001. Relationships in medical subject headings. Relationships in the Organization of Knowledge. Kluwer Academic Publishers, pp.171–184.
- Nelson, S.J., M. Schopen, A.G. Savage, J.L. Schulman y N. Arluk. 2004. The MeSH translation maintenance system: structure, interface, design and implementation. M. Fieschi, et al. (Ed.). Proceedings of the 11th World Congress on Medical Informatics, pp.67–69.
- Stevens, R., C.A. Goble y S. Bechhofer. 2000. Ontology-based knowledge representation for bioinformatics. Brief Bioinformatics 1(4), pp. 398-414.
- Xu, S., J. McCusker y M. Krauthammer. 2008. Yale Image Finder (YIF): a new search engine for retrieving biomedical images. Bioinformatics 24(17): 1968-1970.