Independence of basic arithmetic operationsevidence from cognitive neuropsychology

  1. Salguero Alcañiz, María Pilar
  2. Alameda Bailén, José Ramón
Revue:
Anales de psicología

ISSN: 0212-9728 1695-2294

Année de publication: 2013

Volumen: 29

Número: 3

Pages: 1006-1012

Type: Article

D'autres publications dans: Anales de psicología

Résumé

The cases described in literature evidence that arithmetical op-erations can function independently, which allows to infer that the cogni-tive processes involved in the different operations might be different. Objective of that work is to determine the different processes involved in the resolution of arithmetical operations: addition, subtraction and multip-lication. Method. Instrument: Assesment of Numeric Processing and Calculation Battery (Salguero & Alameda, 2007, 2011). Subjects. Patients of acquired cerebral injury. Results and conclusions. The patient MNL preserves the addition and the mul-tiplication but he presents altered the subtraction. On the contrary, the pa-tient PP shows alterations in addition and multiplication but he conserves the skills for the subtraction. ISR presents a selective deficit for multiplica-tion with intact addition and substraction. Finally, ACH preserves the addi-tion but presents deficit for substraction and multiplication. This double dissociation confirms the postulates of the anatomical func-tional model of Dehaene and Cohen (1995, 1997) that consider a double route for the resolution of arithmetical simple operations: linguistic route, for numerical information learned automatically (of memory) and would be used for the operations of addition and multiplication, on the other hand the semantic elaboration would be for substraction

Références bibliographiques

  • Alameda, J. R., Salguero, M. P., & Lorca, J. A. (2007). Conocimiento numérico cuantitativo y léxico: evidencia de doble disociación. Psicothema, 19 (3), 381-387.
  • Alsina, A., & Sáiz, D. (2003). Un análisis comparativo del papel del bucle fonológico versus la agenda visoespacial en el cálculo en niños de 7-8 años. Psicothema, 15(2), 241-246.
  • Cohen, L. & Dehaene, S. (1991). Neglect dyslexia for numbers? A case report. Cognitive Neuropsychology, 8, 39-58. doi: 10.1080/02643299108253366
  • Dagenbach, D., & McCloskey, M. (1992). The organisation of arithmetic facts in memory: Evidence from a brain-damaged patient. Brain and Cognition, 20, 345-366. doi: 10.1016/0278-2626(92)90026-I
  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1-42. doi: 10.1016/0010-0277(92)90049-N
  • Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83-120.
  • Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33, 219-250. doi: 10.1016/S0010-9452(08)70002-9
  • Ferro, J. M., & Botelho, M. A. S. (1980). Alexia for arithmetical sign. A cause of disturbed calculation. Cortex, 16, 175-180.
  • Kosslyn, S. M., Koenig, O., Barrett, A., Cave, C. B., Tang, J., & Gabrieli, J. D. E. (1989). Evidence for two types of spatial representations: Hemispheric specialisations for categorical and coordinate relations. Journal of Experimental Psychology: Human Perception And Performance, 15, 723-735. doi: 10.1037/0096-1523.15.4.723
  • McCloskey, M. (1992). Cognitive mechanisms in numerical processing: Evidence from acquired dyscalculia. Cognition, 44, 107-157. doi: 10.1016/0010-0277(92)90052-J
  • McCloskey, M., Caramazza, A., & Basili, A. (1985). Cognitive mechanisms in number processing and calculation: Evidence from dyscalculia. Brain and Cognition, 4, 171-196. doi: 10.1016/0278-2626(85)90069-7
  • McNeil, J. E., & Warrington, E. K. (1994). A dissociation between addition and subtraction within written calculation. Neuropsychologia, 32, 717-728. doi: 10.1016/0028-3932(94)90031-0
  • Moore, D. S., & McCabe, G. P. (2001). Introduction to the Practice of Statistics. New York: W. H. Freeman. 4a Ed. 2003.
  • Pryce, G. (2005). Inference and Statistics in SPSS. Glasgow: GeeBeeJey Publishing.
  • Salguero, M. P. (2007). El procesamiento de los números arábigos: una aproximación desde la neuropsicología cognitiva. Huelva: Universidad de Huelva.
  • Salguero, M. P., & Alameda, J. R. (2003). El procesamiento de los números y sus implicaciones educativas. XXI, Revista de Educación, 5, 181-189.
  • Salguero, M. P., & Alameda, J. R. (2007). Batería para la Evaluación del Procesamiento Numérico y el Cálculo. Huelva: Hooverand.
  • Salguero, M. P., & Alameda, J. R. (2010). Diferencias neuroanatómicas y funcionales entre razonamiento numérico y cálculo. Análisis y modificación de conducta, 36, 153-154, 33-42.
  • Salguero, M. P., & Alameda, J. R. (2011). Procesamiento Numérico y Cálculo. Pruebas para su evaluación. Leipzig: Editorial Académica Española.
  • Salguero, M. P., Lorca, J. A., & Alameda, J. R. (2003). Procesamiento numérico y cálculo: evidencia de un caso desde la Neuropsicología Cognitiva. Revista de Neurología, 36 (9), 817-820.
  • Salguero, M. P., Lorca, J. A., & Alameda, J. R. (2004). Independencia funcional del conocimiento numérico léxico y la representación de la magnitud: Evidencia de un caso. Revista de Neurología, 39 (11), 1038-1042.
  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale & R. J. Mansfield (Eds.), Analysis of visual behavior (pp. 549-586). Cambridge, MA: MIT Press.
  • Van Harskamp, N. J., & Cipolotti, L. (2001). Selective impairments for addition, subtraction and multiplication. Implications for the organisation of arithmetical facts. Cortex, 37, (3), 363-388. doi:10.1016/S0010-9452(08)70579-3