Simulation of control strategies for decision-making regarding Digitaria sanguinalis in glyphosate-resistant soybeans

  1. Fernando H Oreja
  2. Fernando Bastida
  3. José L Gonzalez-Andújar
Revista:
Ciencia e investigación agraria: revista latinoamericana de ciencias de la agricultura

ISSN: 0718-1620

Año de publicación: 2012

Volumen: 39

Número: 2

Páginas: 299-308

Tipo: Artículo

DOI: 10.4067/S0718-16202012000200006 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Ciencia e investigación agraria: revista latinoamericana de ciencias de la agricultura

Resumen

Se desarrolló un modelo bioeconómico para la toma de decisión del control de pasto cuaresma (Digitaria sanguinalis), en el cultivo de soja resistente a glifosato, en la Pampa Ondulada de Argentina. Se evaluaron cuatro estrategias de control de la maleza basadas en el uso de glifosato. En ausencia de herbicida (T1), la población de semillas de la maleza aumenta hasta una densidad de equilibrio de 12.079 semillas m-2. Una única aplicación temprana del herbicida (T2), dirigida a un controlar la primera cohorte de la maleza, permite a la segunda producir la suficiente cantidad de semillas para mantener la densidad poblacional del banco del suelo. Una única aplicación tardía del herbicida (T3), dirigida a controlar la primera y la segunda cohorte, resulta en un aumento del banco de semillas a niveles similares a aquellos alcanzados sin tratamiento. Dos aplicaciones en el mismo año dirigidas a controlar ambas cohortes (T4), llevan al banco de semillas luego de 10 años a sólo un 23,17% menos que la densidad predicha para el tratamiento sin control. Las predicciones del modelo indican que en ausencia de control, hay un 93% de pérdida de rendimiento del cultivo a causa de la maleza. La menor reducción del rendimiento del cultivo (27%) fue predicha con la estrategia T2, el control más común utilizado por los productores locales. Esta estrategia lleva a reducciones en la densidad de semillas en el banco del suelo, a mayores rendimientos del cultivo y retornos económicos comparados con las otras estrategias.

Referencias bibliográficas

  • Aguyoh, J.N, Masiunas, J.B. (2003). Interference of large crabgrass (Digitaria sanguinalis) with snap beans. Weed Science. 51. 171-176
  • Bhowmik, P, Kushwaha, S, Mitra, S. (1999). Response of various weed species and corn (Zea mays) to RPA 201772. Weed Technology. 13. 504-509
  • Buhler, D.D. (1995). The influence of tillage systems on weed populations dynamics and management in corn and soybean in the Central USA. Crop Science. 35. 1247-1258
  • Burnside, O.C, Wilson, R.G, Weisberg, S, Hubbard, K.G. (1996). Seed longevity of 41 species buried 17 years in Eastern and Western Nebraska. Weed Science. 44. 74-86
  • Cousens, R, Mortimer, M. (1995). Dynamics of weed populations. Cambridge University Press. Cambridge.
  • Culpepper, A.S, Gimenez, A.E, York, A.C, Batts, R.B, Wilcut, J.W. (2001).
  • Davis, A.S, Renner, K.A, Gross, K.L. (2005).
  • de la Fuente, E.B, Suárez, S.A, Ghersa, C.M. (2006). Soybean weed community composition and richness between 1995 and 2003 in the Rolling Pampas (Argentina). Agriculture, Ecosystems & Environment. 115. 229-236
  • Delouche, J.C. (1956). Dormancy in seeds of Agropy-ron smithii, Digitaria sanguinalis and Poa pra-tensis. Iowa State College Journal of Science. 30. 348-349
  • Egley, G.H, Chandler, J.M. (1978). Germination and viability of weed seeds after 2.5 years in a 50-year buried seed study. Weed Science. 26. 230-239
  • Fehr, W.R, Caviness, C.E. (1977). Stages of soybean development: Special report 80. Iowa State University of Science and Technology. Ames. Iowa.
  • Fernandez-Quintanilla, C, Navarrete, L, Torner, C, Andujar, J. L. (1987). Influence of herbicide treatments on the population-dynamics of Avena sterilis ssp ludoviciana (Durieu) Nyman in winter-wheat crops. Weed Research. 27. 375-383
  • Forcella, F, Benech Arnold, L, Sanchez, R, Ghersa, C.M. (2000). Modelling seedling emergence. Field Crops Research. 67. 123-139
  • Fu, R, Ashley, R.A. (2006). Interference of large crabgrass (Digitaria sanguinalis), redroot pigweed (Amaranthus retroflexus), and hairy galin-soga (Galinsoga ciliata) with bell pepper. Weed Science. 54. 364-372
  • Gallart, M, Verdú, A.M.C, Mas, M.T. (2008). Dormancy breaking in Digitaria sanguinalis seeds: the role of the caryopsis covering structures. Seed Science & Technology. 36. 259-270
  • Gonzalez-Andujar, J. L, Fernandez-Quintanilla, C. (1991). Modeling the population dynamics of Avena sterilis under dry-land cereal cropping systems. Journal of Applied Ecology. 28. 16-27
  • Gonzalez-Andujar, J. L, Fernandez-Quintanilla, C. (1993). Strategies for the control of Avena sterilis in winter wheat production systems in central Spain. Crop Protection. 12. 617-623
  • Gonzalez-Andujar, J.L, Fernandez-Quintanilla, C, Bastida, F, Calvo, R, Gonzalez-Diaz, L, Izquierdo, J, Lezaun, J.A, Perea, F, Sanchez del Arco, M.J, Urbano, J.M. (2010). Field evaluation of a decision support system for Avena sterilis ssp. ludoviciana control in winter wheat.
  • Gonzalez-Díaz, L, Bastida, F, González-Andujar, J.L. (2009). Modelling of the population dynamics of Phalaris brachystachys Link under various herbicide control scenarios in a Mediterranean climate. Spanish Journal of Agricultural Research. 7. 35-39
  • Hiroyuko, K, Atsushi, O. (2005). Digitaria cili-aris seedbanks in untilled and tilled soybean fields. Weed Biology and Management. 5. 53-61
  • Holm, L.G, Plucknett, D.L, Pancho, J.V, Herberger, J.P. (1977). The World's Worst Weeds: Distribution and Biology. University of Hawaii Press. Honolulu.
  • James, C. (2001). Global Review of Commercialised Transgenic Crops, 2001: ISAAA Briefs, 24. Preview ISAAA. Ithaca^eNY NY.
  • King, C.A, Oliver, L.R. (1994). A model for predicting large crabgrass (Digitaria sanguinalis) emergence as influenced by temperature and water potential. Weed Science. 42. 561-567
  • Leguizamón, E. (1976). Actas IV Reunión Técnica Nacional de Soja. Miramar. Buenos Aires.
  • Marzocca, A. (1994). Guía descriptiva de malezas del cono sur. Instituto Nacional de Tecnología Agropecuaria. Buenos Aires. 103-104
  • Masin, R, Zuin, M.C, Otto, S, Zanin, G. (2006). Seed longevity and dormancy of four summer annual grass weeds in turf. Weed Research. 46. 362-370
  • Menalled, F.D, Marino, P.C, Renner, K.A, Landis, D.A. (2000). Post-dispersal weed seed predation in Michigan crop fields as a function of agricultural landscape structure. Agriculture, Ecosystems and Environment. 77. 193-202
  • Mitidieri, A. (1989). El control químico de las malezas en soja Argentina: IV World soybean research conference. Buenos Aires. 2117-2122
  • Molher, C, Callaway, B. (1995). Effects of tillage and mulch on weed seed production and seed bank in sweet corn. Journal of Applied Ecology. 32. 627-639
  • Monks, D.W, Schultheis, J.R. (1998). Critical weed-free period for large crabgrass (Digitaria sanguinalis) in transplanted watermelon (Citrul-lus lanatus). Weed Science. 46. 530-532
  • Norsworthy, J.K. (2004). Soil-applied herbicide use in wide- and narrow-row glyphosate-resistant soybean (Glycine max). Crop Protection. 23. 1237-1244
  • Oreja, F.H, de la Fuente, E.B. (2005). Dinámica poblacional del pasto cuaresma (Digitaria sanguinalis (L.) Scop.) en cultivos de soja de la Pampa Ondulada. XVII Congreso de la Asociación Latinoamericana de malezas. Varadero Matanzas.767-771
  • Oreja, F.H, González-Andújar, J.L. (2007). Modelling competition between large crabgrass and glyphosate-resistant soybean in the Rolling Pampas of Argentina. Commun. Biometry Crop Science. 2. 62-67
  • Puricelli, E, Tuesca, D. (2005). Weed density and diversity under glyphosate-resistant crop sequences. Crop Protection. 24. 533-542
  • Rahman, A, James, T.K, Grbavac, N. (2001). Potential of weed seedbanks for managing weeds: a review of recent New Zealand research. Weed Biology and Management. 1. 89-95
  • Richmond, D.S, Grewal, P.S, Cardina, J. (2003). Competition between Lolium perenne and Digitaria sanguinalis: Ecological consequences for harbouring an endosymbiotic fungus. Journal of Vegetation Science. 14. 835-840
  • Sarker, M.Y, Mossaddeque Hossain, M, Hasan, M.K, Khan, M.A.H, Amin, M.R, Begum, F. (2002). Weed infestation in direct seeded and transplanted Australian rice as affected by method of planting and weeding regime. Journal of Biological Science. 2. 652-655
  • Suárez, S.A, de la Fuente, E.B, Ghersa, C.M, León, R.J.C. (2001). Weed community as an indicator of summer crop yield and site quality. Agronomy Journal. 93. 524-530
  • Swinton, S.M, King, R.P. (1994). A bioeconomic model for weed management in corn and soybean. Agricultural Systems. 44. 313-335
  • Toole, E.H, Toole, V.K. (1941). Progress of germination of seed of Digitaria as influenced by germination temperature and other factors. Journal of agricultural research. 63. 65-90
  • Torra, J, Gonzalez-Andujar, J.L, Recasens, J. (2008). Modelling the long term population dynamics of poppy (Papaver rhoeas) under various weed management systems. Weed Research. 48. 136-146
  • Tuesca, D, Puricelli, E, Papa, J.C. (2001). A long-term study of weed flora shifts in different tillage systems. Weed Research. 4. 369-382
  • Van Gessel, M.J, Ayeni, A.O, Majek, B.A. (2001). Glyphosate in full-season in no-till glyphosate-re-sistant soybean: role of pre-plant applications and residual herbicides. Weed Technology. 15. 714-724
  • Walker, R. H, Wehtje, G, Richburg, J.S. (1998). Interference and control of large crabgrass (Digitaria sanguinalis) and Southern Sandbur (Cenchrus echinatus) in forage bermudagrass (Cynodon dactylon). Weed Technology. 12. 707-711
  • Zanin, G, Otto, S, Riello, L, Borin, M. (1997). Ecological interpretation of weed flora dynamics under different tillage systems. Agricultural, Ecosystems and Environment. 66. 177-188