Plataforma Experimental para el Estudio de la Vulnerabilidad Hardware en los Robots Móviles: el Bus I2C como Caso de Estudio

  1. F. Gomez-Bravo 1
  2. J. Medina García 1
  3. R. Jiménez Naharro 1
  4. J.A. Gómez Galán 1
  5. M. Sánchez Raya 1
  1. 1 Universidad de Huelva
    info

    Universidad de Huelva

    Huelva, España

    ROR https://ror.org/03a1kt624

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2017

Volumen: 14

Número: 2

Páginas: 205-216

Tipo: Artículo

DOI: 10.1016/J.RIAI.2017.02.002 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumen

Este artículo presenta una plataforma experimental para estudiar los efectos de las vulnerabilidades hardware de los robots móviles. La plataforma se ha diseñado de forma que los elementos hardware que intervienen en el proceso de navegación pueden ser monitorizados durante el funcionamiento del robot, y, si es el caso, su comportamiento puede ser alterado, simulando de esta forma una situación de fallo. El artículo muestra como caso particular de estudio la vulnerabilidad del Bus I2C cuando se producen anomalías en la señal de reloj. Se incluyen un conjunto de resultados experimentales que confirman el interés de las vulnerabilidades estudiadas y la aplicabilidad de la plataforma desarrollada.

Referencias bibliográficas

  • Alkalai, L., CHAU, S. N., Tai, A. T., 2006. Fault tolerant communication channel structures. U.S. Patent No 7,020,076.
  • Anderson, R., Kuhn, M., 1996. Tamper Resistence a Cautionary Note”, 2nd USENIX Workshop on Electronic Commerce Proceeding, 1-11.
  • Arora, A., Telang, R., & Xu, H., 2008. Optimal policy for software vulnerability disclosure. Management Science, 54(4), 642-656. Ashenden, P. J., 1990. The VHDL cookbook. Department of Computer Science, University of Adelaide.
  • Basu, P., & Redi, J., 2004. Movement control algorithms for realization of fault tolerant ad hoc robot networks. Network, IEEE, 18(4), 36-44.
  • Brown, D. W., 1981. A state machine synthesizer SMS. In Proceedings of the 18th Design Automation Conference, 301-305. Bruschi, D., Cavallaro, L., Lanzi, A., 2005. Replay Attack in TCG Specification and Solution. In Proceedings of the 21st Annual Computer Security Applications Conference, IEEE Computer Sociecity, 127–137. DOI: 10.1109/CSAC.2005.47.
  • Cañas, N., Hernández, W., González, G., Sergiyenko, O., 2014. Controladores multivariables para un vehículo autónomo terrestre: Comparación basada en la fiabilidad del software. Revista Iberoamericana de Automática e Informática Industrial RIAI, 11(2), 179-190. DOI: 10.1016/j.riai.2014.02.002
  • Chapman, K., 2006. Initial Design for Spartan-3E Starter Kit (LCD Display Control). Xilinx Ltd 16th February.
  • Chen, C. Y., Shih, B. Y., Shih, C. H., & Chou, W. C. 2012. RETRACTED: The development of autonomous low cost biped mobile surveillance robot by intelligent bricks. Journal of Vibration and Control, 18(5), 577-586.
  • Carbone, G., Gómez-Barvo, F. 2015. Motion and Operation Planning of Robotic Systems. Springer International Publishing. Switzerland. DOI: 10.1007/978-3-319-14705-5.
  • Cuesta, F., Gómez-Bravo, F., & Ollero, A., 2004. Parking maneuvers of industrial-like electrical vehicles with and without trailer. Industrial Electronics, IEEE Transactions on, 51(2), 257-269. DOI: 10.1109/TIE.2004.824855.
  • Ferruz, J.,Vega, V. M. Ollero, A., & Blanco, V., 2011. Reconfigurable control architecture for distributed systems in the HERO autonomous helicopter. Industrial Electronics, IEEE Transactions on, 58(12), 5311-5318. DOI: 10.1109/TIE.2010.2046003.
  • Fukuhara, R., Day, L., Luong, H. H., Rasmussen, R., & Chau, S. N., 2004. I2C bus protocol controller with fault tolerance. U.S. Patent No. 6,728,908. Washington, DC: U.S. Patent and Trademark Office.
  • Garcia-Cerezo, A., Mandow, A., Martinez, J. L., Gómez-de-Gabriel, J., Morales, J., Cruz, A., Seron, J., 2007. Development of ALACRANE: A mobile robotic assistance for exploration and rescue missions. In Safety, Security and Rescue Robotics, 2007. SSRR 2007. IEEE International Workshop on, pp 1-6. DOI: 10.1109/SSRR.2007.4381269.
  • Gomez-Bravo, F., Naharro, R. J., García, J. M., Galán, J. G., & Raya, M. S., 2015. Sobre la vulnerabilidad de los robots móviles frente a los ataques hardware. XXXVI Jornadas de Automática, pp. 358-365.
  • Gomez-Bravo, F., Naharro, R. J., García, J. M., Galán, J. G., & Raya, M. S. (2016). Hardware Attacks on Mobile Robots: I2C Clock Attacking. In Robot 2015: Second Iberian Robotics Conference, pp. 147-159.
  • Gómez, J. V., Vale, A., Garrido, S., & Moreno, L., 2015. Performance analysis of fast marching based motion planning for autonomous mobile robots in ITER scenarios. Robotics and Autonomous Systems, 63, 36-49.
  • Hamblen, J.O., van Bekkum, G.M.E., 2013. An Embedded Systems Laboratory to Support Rapid Prototyping of Robotics and the Internet of Things, Education, IEEE Transactions on, 56 (1), 121-128.
  • Heelan, S. (2011). Vulnerability detection systems: Think cyborg, not robot. IEEE Security & Privacy, (3), 74-77. DOI: 10.1109/MSP.2011.70.
  • Huang, A., (2003). Hacking the Xbox: An Introduction to Reverse Engineering, No Starch Press. Jardón, A., Giménez, A., Correal, R., Martinez, S., & Balaguers, C., 2008. Asibot: Robot portátil de asistencia a discapacitados. Concepto, arquitectura de control y evaluación clínica. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(2), 48-59. DOI: 10.1016/S1697-7912(08)70144-4
  • Kachouie, R., Sedighadeli, S., Khosla, R., Chu, M. T. 2014. Socially assistive robots in elderly care: a mixed-method systematic literature review. International Journal of Human Computer Interaction, 30(5), 369-393.
  • Karaklajic, D, Verbauwhede, I., 2013. Hardware Designer’s Guide to Fault Attacks. IEEE Transactions on Very Large Scale Integration Systems, 21, 2295-2306. DOI: 10.1109/TVLSI.2012.2231707.
  • Ladd, A. M., Bekris, K. E., Rudys, A. P., Wallach, D. S., & Kavraki, L. E., 2004. On the feasibility of using wireless ethernet for indoor localization. IEEE Transactions on Robotics and Automation, 20(3), 555-559.
  • Marqués, C., Cristóvão, J., Alvito, P., Lima, P., Frazão, J., Ribeiro, I., Ventura, R. 2007. A search and rescue robot with tele-operated tether docking system. Ind. Robot: An International Journal, 34(4), 332-338.
  • Minguez, J., Montesano, L., Montano, L. 2004. An architecture for sensor-based navigation in realistic dynamic and troublesome scenarios. In Proceedings of the Intelligent Robots and Systems International Conference on, Vol. 3, pp. 2750-2756. DOI: 10.1109/IROS.2004.1389825.
  • Moreno, H. A., Saltaren, R., Carrera, I., Puglisi, L., Aracil, R., 2012. Índices de desempeño de robots manipuladores: una revisión del estado del arte. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(2), 111-122. DOI: 10.1016/j.riai.2012.02.005.
  • Morales, J., Martínez, J. L., Martínez, M. A., Mandow, A. 2009. Pure pursuit reactive path tracking for nonholonomic mobile robots with a 2D laser scanner. Journal on Advances in Signal Processing, 2009, 3. DOI:10.1155/2009/935237.
  • Nakhaeinia, D., Payeur, P., Hong, T. S., Karasfi, B. 2015. A hybrid control architecture for autonomous mobile robot navigation in unknown dynamic environment. In 2015 IEEE International Conference on Automation Science and Engineering (CASE) (pp. 1274-1281).
  • Nobile, C., 2012. Robots Vulnerable to Hacking. http://www.roboticsbusinessreview.com/article/robots_vulnerable_to_hacking/
  • Ollero, A., Heredia, G., 1995. Stability analysis of mobile robot path tracking. In Intelligent Robots and Systems 95. In Proceedings of the Human Robot Interaction and Cooperative Robots. IEEE/RSJ International Conference on,Vol. 3, pp. 461-466. DOI: 10.1109/IROS.1995.525925
  • Ollero, A., Mandow, A., Muñoz, V. F., & De Gabriel, J. G., 1994. Control architecture for mobile robot operation and navigation. Robotics and computer integrated manufacturing, 11(4), 259-269.
  • Ollero, A., Arrue, B. C., Ferruz, J., Heredia, G., Cuesta, F., López-Pichaco, F., & Nogales, C., 1999. Control and perception components for autonomous vehicle guidance. Appliction to the ROMEO vehicles. Control Engineering Practice, 7(10), 1291-1299. DOI: 10.1016/S0967-0661(99)00091-X.
  • Park, J., Jeong, W., Lee, H. K., Won, J. 2013. An efficient path planning method for a cleaning robot based on ceiling vision. In 2013 IEEE International Conference on Consumer Electronics (ICCE).
  • Prieto, J., Ramos, O., Delgado, A., 2007. Diseño de un gene digital en FPGA y MATLAB con aplicaciones en robótica móvil. XIII Taller Iberchip IWS-2007, Lima, 14.
  • Sheppard, B., Thompson, T., (2014). Cyber Security for Robots: Scenarios. http://www.roboticsbusinessreview.com/article/cyber_security_for_robots_scenarios_for_2030. Tehranipoor, M., Koushanfaar, F., 2010. “A Survey of Hardware Trojan Taxonomy and Detection”. IEEE Design and Test of Computers, 27(1), 10-25. DOI: 10.1109/MDT.2010.
  • Tehranipoor, M., Koushanfaar, F., 2010. “A Survey of Hardware Trojan Taxonomy and Detection”. IEEE Design and Test of Computers, 27(1), 10-25. DOI: 10.1109/MDT.2010.