Nondegenerate and Nilpotent Centers for a Cubic System of Differential Equations
- Algaba, Antonio 1
- García, Cristóbal 1
- Giné, Jaume 2
-
1
Universidad de Huelva
info
-
2
Universitat de Lleida
info
ISSN: 1575-5460
Year of publication: 2019
Volume: 18
Issue: 1
Pages: 333-345
Type: Article
More publications in: Qualitative theory of dynamical systems
Sustainable development goals
Abstract
We consider the autonomous system of differential equations of the form x˙=P1(x,y)+P2(x,y),y˙=Q1(x,y)+Q3(x,y),where Pi and Qi are homogeneous polynomials of degree i. For such systems we provide the necessary and sufficient conditions to have a center at the origin. In fact this family only has nondegenerate and nilpotent centers.
Funding information
Funders
-
Ministerio de Economía y Competitividad
- 2017-84383-P
-
Agència de Gestió d’Ajuts Universitaris i de Recerca
- 2017SGR 1276
-
Ministerio de Economía y Competitividad
- MTM2014-56272-C2-2
-
Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
- P12-FQM-1658
- FQM-276
Bibliographic References
- 1. Álvarez, M.J., Gasull, A.: Monodromy and stability for nilpotent critical points. Int. J. Bifurcat Chaos 15(4), 1253–1265 (2005)
- 2. Álvarez, M.J., Gasull, A.: Generating limit cycles from a nilpotent critical point via normal forms. J. Math. Anal. Appl. 318(1), 271–287 (2006)
- 3. Algaba, A., Checa, I., García, C., Gamero, E.: On orbital-reversibility for a class of planar dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 20(1), 229–239 (2015)
- 4. Algaba, A., García, C., Giné, J.: Nilpotent centres via inverse integrating factors. Eur. J. Appl. Math. 27(5), 781–795 (2016)
- 5. Algaba, A., García, C., Reyes, M.: Characterization of a monodromic singular point of a planar vector field. Nonlinear Anal. 74(16), 5402–5414 (2011)
- 6. Algaba, A., García, C., Reyes, M.: A new algorithm for determining the monodromy of a planar differential system. Appl. Math. Comput. 237, 419–429 (2014)
- 7. Andreev, A.: Investigations of the behavior of the integral curves of a system of two differential equations in the neighborhood of a singular point. Transl. Am. Math. Soc. 8, 187–207 (1958)
- 8. Berthier, M., Moussu, R.: Réversibilité et classification des centres nilpotents. Ann. Inst. Fourier (Grenoble) 44, 465–494 (1994)
- 9. Chavarriga, J., Giacomini, H., Giné, J., Llibre, J.: Local analytic integrability for nilpotent centers. Ergod. Theory Dyn. Syst. 23(2), 417–428 (2003)
- 10. Decker, W., Laplagne, S., Pfister, G., Schonemann, H.A.: SINGULAR 3-1 library for computing the prime decomposition and radical of ideals. primdec.lib (2010)
- 11. Dumortier, F.: Singularities of vector fields on the plane. J. Differ. Equ. 23(1), 53–106 (1977)
- 12. Farr, W.W., Li, C., Labouriau, I.S., Langford, W.F.: Degenerate Hopf-bifurcation formulas and Hilbert’s 16th problem. SIAM J. Math. Anal. 20, 13–29 (1989)
- 13. Gasull, A., Llibre, J., Mañosa, V., Mañosas, F.: The focus-centre problem for a type of degenerate system. Nonlinearity 13, 699–729 (2000)
- 14. García, I., Giné, J., Grau, M.: A necessary condition in the monodromy problem for analytic differential equations on the plane. J. Symb. Comput. 41(9), 943–958 (2006)
- 15. Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decompositions of polynomials. J. Symb. Comput. 6, 146–167 (1988)
- 16. Giné, J.: The nondegenerate center problem and the inverse integrating factor. Bull. Sci. Math. 130(2), 152–161 (2006)
- 17. Giné, J.: The center problem for a linear center perturbed by homogeneous polynomials. Acta Math. Sin. (Engl. Ser.) 22(6), 1613–1620 (2006)
- 18. Giné, J.: Reduction of integrable planar polynomial differential systems. Appl. Math. Lett. 25(11), 1862–1865 (2012)
- 19. Giné, J.: Center conditions and limit cycles for BiLiénard systems. Electron. J. Differ. Equ. 2017(86), 1–5 (2017)
- 20. Giné, J., De Prada, P.: The nondegenerate center problem in certain families of planar differential systems. Int. J. Bifurcat. Chaos 19(1), 435–443 (2009)
- 21. Giné, J., Llibre, J.: On the mechanisms for producing linear type centers in polynomial differential systems. Mosc. Math. J. 18(3), 1–12 (2018)
- 22. Giné, J., Peralta-Salas, D.: Existence of inverse integrating factors and Lie symmetries for degenerate planar centers. J. Differ. Equ. 252(1), 344–357 (2012)
- 23. Giné, J., Santallusia, X.: On the Poincaré–Liapunov constants and the Poincaré series. Appl. Math. (Warsaw) 28(1), 17–30 (2001)
- 24. Greuel, G.M., Pfister, G., Schönemann, H.A.: SINGULAR 3.0 A computer algebra system for polynomial computations. In: Centre for Computer Algebra, University of Kaiserlautern (2005). http:// www.singular.uni-kl.de
- 25. Mañosa, V.: On the center problem for degenerate singular points of planar vector fields. Int. J. Bifurcat. Chaos 12(4), 687–707 (2002)
- 26. Mazzi, L., Sabatini, M.: A characterization of centres via first integrals. J. Differ. Equ. 76, 222–237 (1988)
- 27. Moussu, R.: Symétrie et forme normale des centres et foyers dégénérés. Ergod. Theory Dyn. Syst. 2, 241–251 (1982)
- 28. Reeb, G.: Sur certaines propriétés topologiques des variétés feuilletées (French) Publ. Inst. Math. Univ. Strasbourg 11, pp. 5–89, 155–156. Actualités Sci. Ind., no. 1183 Hermann & Cie., Paris (1952)
- 29. Romanovski, V.G., Prešern,M.: An approach to solving systems of polynomials via modular arithmetics with applications. J. Comput. Appl. Math. 236(2), 196–208 (2011)
- 30. Singer, M.F.: Liouvillian first integrals of differential equations. Trans. Am. Math. Soc. 333, 673–688 (1992)
- 31. Wang, P.S., Guy, M.J.T., Davenport, J.H.: P-adic reconstruction of rational numbers. ACM SIGSAM Bull. 16(2), 2–3 (1982)