Analytically Integrable Centers of Perturbations of Cubic Homogeneous Systems

  1. Antonio Algaba Durán 1
  2. Cristóbal García García 1
  3. Manuel Reyes Columé 1
  1. 1 Universidad de Huelva
    info

    Universidad de Huelva

    Huelva, España

    ROR https://ror.org/03a1kt624

Journal:
Qualitative theory of dynamical systems

ISSN: 1575-5460

Year of publication: 2021

Volume: 20

Issue: 2

Type: Article

DOI: 10.1007/S12346-021-00479-5 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Qualitative theory of dynamical systems

Metrics

Cited by

  • Scopus Cited by: 1 (21-11-2023)
  • Web of Science Cited by: 0 (22-10-2023)
  • Dimensions Cited by: 0 (10-04-2023)

JCR (Journal Impact Factor)

  • Year 2021
  • Journal Impact Factor: 0.931
  • Journal Impact Factor without self cites: 0.763
  • Article influence score: 0.314
  • Best Quartile: Q3
  • Area: MATHEMATICS Quartile: Q3 Rank in area: 176/333 (Ranking edition: SCIE)
  • Area: MATHEMATICS, APPLIED Quartile: Q4 Rank in area: 212/267 (Ranking edition: SCIE)

SCImago Journal Rank

  • Year 2021
  • SJR Journal Impact: 0.358
  • Best Quartile: Q3
  • Area: Discrete Mathematics and Combinatorics Quartile: Q3 Rank in area: 55/87
  • Area: Applied Mathematics Quartile: Q3 Rank in area: 355/603

Scopus CiteScore

  • Year 2021
  • CiteScore of the Journal : 1.8
  • Area: Discrete Mathematics and Combinatorics Percentile: 70
  • Area: Applied Mathematics Percentile: 44

Journal Citation Indicator (JCI)

  • Year 2021
  • Journal Citation Indicator (JCI): 0.85
  • Best Quartile: Q2
  • Area: MATHEMATICS Quartile: Q2 Rank in area: 146/475
  • Area: MATHEMATICS, APPLIED Quartile: Q2 Rank in area: 118/317

Dimensions

(Data updated as of 10-04-2023)
  • Total citations: 0
  • Recent citations: 0
  • Field Citation Ratio (FCR): 0.0

Abstract

We consider the analytically integrable perturbations of cubic homogeneous differential systems whose origin is an isolated singularity. We prove that are orbitally equivalent to the cubic vector field associated. We also characterize the analytically integrable centers. We apply the results to two families of degenerate vector fields.

Bibliographic References

  • Algaba, A., Checa, I., García, C., Giné, J.: Analytic integrability inside a family of degenerate centers. Nonlinear Anal. Real World Appl. 31, 288–307 (2016)
  • Algaba, A., Gamero, E., García, C.: The integrability problem for a class of planar systems. Nonlinearity 22, 395–420 (2009)
  • Algaba, A., Díaz, M., García, C., Giné, J.: Analytic integrability around a nilpotent singularity: the non-generic case. Comm. Pure Appl. Anal. 19, 407–423 (2020)
  • Algaba, A., García, C., Giné, J.: Analytic integrability around a nilpotent singularity. J. Differ. Equ. 267, 443–467 (2019)
  • Algaba, A., García, C., Reyes, M.: Analytic invariant curves and analytic integrability of a planar vector field. J. Differ. Equ. 266, 1357–1376 (2019)
  • Algaba, A., García, C., Reyes, M.: Analytical integrability of perturbations of quadratic systems. Mediterr. J. Math. (2021). https://doi.org/10.1007/s00009-020-01647-8
  • Algaba, A., García, C., Reyes, M.: Analytical integrability problem for perturbations of cubic Kolmogorov systems. Chaos, Solitons Fractals 113, 1–10 (2018)
  • Algaba, A., García, C., Reyes, M.: Like-linearizations of vector fields. Bull. Sci. Math. 133, 806–816 (2009)
  • Algaba, A., García, C., Reyes, M.: Integrability of two dimensional quasi-homogeneous polynomial differential systems. Rocky Mt. J. Math. 41(1), 1–22 (2011)
  • Basov, V.V.: Two-dimensional homogeneous cubic systems: classification and normal forms. I St. Petersburg University. Mathematics 49(2), 99–110 (2016)
  • Chen, X., Giné, J., Romanovski, V.G., Shafer, D.S.: The 1:-q resonant center problem for certain cubic Lotka-Volterra systems. Appl. Math. Comput. 218, 11620–11633 (2012)
  • Christopher, C., Mardešic, P., Rousseau, C.: Normalizable, integrable, and linearizable saddle points for complex quadratic systems in C2. J. Dynam. Control Syst. 9(3), 311–363 (2003)
  • Christopher, C., Rousseau, C.: Normalizable, integrable and linearizable saddle points in the LotkaVolterra system. Qual. Theory Din. Syst. 5(1), 11–61 (2004)
  • Ferˇcec, B., Giné, J.: A blow-up method to prove formal integrability for some planar differential systems. J. Appl. Anal. Math. Comput 8(6), 1833–50 (2018)
  • Ferˇcec, B., Giné, J.: Blow-up method to compute necessary conditions of integrability for planar differential systems Appl. Math. Comput 358, 16–24 (2019)
  • Giné, J., Romanovski, V.G.: Integrability conditions for Lotka-Volterra planar complex quintic systems. Nonlinear Anal. Real World Appl. 11(3), 2100–2105 (2010)
  • Han, M., Jiang, K.: Normal forms of integrable systems at a resonant saddle. Ann. Differ. Equ. 14(2), 150–155 (1998)
  • Liu, C., Chen, G., Chen, G.: Integrability of Lotka-Volterra type systems of degree 4. J. Math. Anal. Appl. 388(2), 1107–1116 (2012)
  • Liu, C., Chen, G., Li, C.: Integrability and linearizability of the Lotka-Volterra systems. J. Differ. Equ. 198(2), 301–320 (2004)
  • Mattei, J.. F., Moussu, R.: Holonomie et intégrales premières. Ann. Sci. École Norm. Sup. (4) 13(4), 469–523 (1980)
  • Poincaré, H.: Mémoire sur les courbes définies par les équations différentielles, J Math Pures Appl 4 (1885) 167–244; Oeuvres de Henri Poincaré, vol. I, pp. 95–114. Gauthier-Villars, Paris (1951)