Diseño, desarrollo y optimización de diferentes sistemas de liberación modificada para la protección y vehiculización de ácidos grasos poliinsaturados omega-3 y curcumina

  1. Vellido Pérez, José Antonio
Supervised by:
  1. Antonio Martínez Férez Director
  2. Edmundo Brito de la Fuente Director

Defence university: Universidad de Granada

Fecha de defensa: 29 June 2021

Committee:
  1. Encarnación Jurado Alameda Chair
  2. María de los Ángeles Martín Lara Secretary
  3. Juan Manuel López Committee member
  4. Julio Boza Puerta Committee member
  5. José María Franco Gómez Committee member

Type: Thesis

Abstract

This Doctoral Thesis is a contribution to the knowledge of delivery systems based on oleogels and emulsions as potential technological options for the encapsulation, protection, transport, and release of high doses of ω-3 PUFAs and curcumin by the oral way. For this purpose, for each delivery system considered (oleogel, W/Og simple emulsion, Og/W simple emulsion, and W1/Og/W2 multiple emulsion), the most important variables to have into account in an experimental design were first chosen with their corresponding ranges. From these independent variables, a design was applied to simultaneously evaluate the effect of all of them and their possible interactions on the response variables of interest (particle size –if applicable–, primary and secondary lipid oxidation, and curcumin retention capacity). In addition, each design had an additional sample (control) that made it possible to evaluate the impact of the oil oleogelification or oleogel emulsification process on the response variables. Subsequently, in order to adjust each response, second-order models with interactions that adequately represented the experimental data were established. Following this, all statistically significant variables were identified and their effects on the response variable were analyzed. Finally, each of the adjusted responses of interest was individually examined to identify the set of operating variables that leads to their individual optimum (maximum or minimum). As expected, the sets of optimal experimental conditions were not equal in all responses, a simultaneous optimization analysis was carried out using the multi-response surface methodology to obtain the best results in global terms. Finally, focusing on one of the optimal formulations, rheological studies were carried out, analysing also the stability of the emulsion –if applicable– and exploring how different environmental conditions (pH, ionic strength, light, or temperature) could influence the curcumin incorporated over time. Besides, on the optimal formulations, the bioaccessibility and bioavailability studies under human physiological conditions were carried out.