Primera aproximación al estudio de la actividad fisiológica en Quercus suber con alta presencia de Cerambyx welensi Küster

  1. Sánchez Osorio, I. 1
  2. López Pantoja, G. 1
  3. Tapias, R. 1
  4. Pareja Sánchez, E. 1
  5. Domínguez, L. 1
  1. 1 Departamento de Ciencias Agroforestales, Escuela Técnica Superior de Ingeniería, Universidad de Huelva
Journal:
Cuadernos de la Sociedad Española de Ciencias Forestales

ISSN: 1575-2410 2386-8368

Year of publication: 2020

Issue: 46

Pages: 57-70

Type: Article

DOI: 10.31167/CSECFV0I46.19894 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Cuadernos de la Sociedad Española de Ciencias Forestales

Sustainable development goals

Abstract

The incidence of Cerambyx welensii on Quercus suber. is a key factor in the decline of trees in dehesa woodlands. Plant volatiles are important in plant-insect interactions, but the host-plant selection mechanism used by C. welensii remains unknown. We studied the short-term variations in physiological performance in Q. suber trees highly visited by C. welensii, as well as some morphological features. We hypothesized that physiological adaptation by Q. suber to cope with stress conditions could influence monoterpene emission patterns, thereby affecting intra-specific host-selection cues used by C. welensii. Altogether 36 Q. suber trees (18 with high presence of adults of C. welensii and 18 without presence of this cerambycid species) were studied for physiological performance (photosynthesis, stomatal conductance and transpiration), as well as perimeter and crown silhouette área, during a period prior to and including the start time of C. welensii flight activity (19:00–21:20 h). The trees with presence of C. welensii trended to exhibit higher (1.5–2.15 times) photosynthetic values from 19:35 to 20:45, as well as larger perimeter than trees without C. welensii. The results suggest that both some morphological features (in a direct way, via visual cues) as well as short-term physiological adjustments under environmental stress (in a indirect way, by its effect in the monoterpene emission pattern), could affect intra-specific host selection by C. welensii.

Bibliographic References

  • Aronson, J., Pereira, J.S., Pausas, J.G. (eds.), 2009. Cork oak woodlands on the Edge. Ecology, Adaptive Management, and Restoration. Society for Ecological Restoration International, Island Press, Washington.
  • Allison, J.D., Borden, J.H., Seybold, J.H., 2004. A reviehttps://doi.org/10.1007/s00049-004-0277-1
  • Bates, D., Maechler, M., Bolker, B., Walker, S., 2014. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4>
  • Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B57: 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  • Comisión Europea, 2008. El Plan de Acción de La Unión Europea en Favor de la Biodiversidad. Detener la pérdida de biodiversidad para 2010 - y más adelante. Oficina de Publicaciones Oficiales de las Comunidades Europeas, Luxemburgo. 28 pp.
  • Comunidad Autónoma de Andalucía, 2010. Ley 7/2010, de 14 de julio, para la Dehesa. «BOJA» núm. 144, de 23 de julio de 2010. «BOE» núm. 193, de 10 de agosto de 2010.
  • Consejo de las Comunidades Europeas, 1992. Directiva 92/43/EEC del Consejo, de 21 de mayo de 1992, relativa a la conservación de los hábitats naturales y de la fauna y flora silvestres.
  • Correia, B., Rodriguez, J.L., Valledor, L., Almeida, T., Santos, C., Cañal, M.J., Pinto, G., 2014. Analysis of the expression of putative heat-stress related genes in relation to thermotolerance of cork oak. J. Plant. Physiol. 171: 399-406. https://doi.org/10.1016/j.jplph.2013.12.004
  • Delfine, S., Csiky, O., Seufert, G., Loreto, F., 2000. Fumigation with exogenous monoterpenes of a non-isoprenoid-emitting oak (Quercus suber): Monoterpene acquisition, translocation, and effect on the photosynthetic properties at high temperatures. New Phytol. 146: 27-36.https://doi.org/10.1046/j.1469-8137.2000.00612.x
  • Google, 2007. Satellite image of Dehesa San Enrique (37°15'43.73"N, 6°28'34.65"O, 80 m asl). Almonte, Huelva, Spain. October 2015, http://earth.google.com
  • Grote, R., 2007. Sensitivity of volatile monoterpene emission to changes in canopy structure: a model-based exercise with a process-based emission model. New Phytol. 173: 550-561. https://doi.org/10.1111/j.1469-8137.2006.01946.x
  • Grote, R., Monson, R., Niinemets, Ü., 2013. Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In: Niinemets, Ü., Monson, R.K. (eds.), Biology, controls and models of tree volatile organic compound emission. Springer Netherlands, Dortrecht. pp. 315-355. https://doi.org/10.1007/978-94-007-6606-8_12
  • Hakola, H., Laurila, T., Lindfors, V., Hellén, H., Gaman, A., Rinne, J., 2001. Variation of the VOC emission rates of birch species during the growing season. Boreal. Environ. Res. 6: 237-249.
  • Hoeber, S., Leuschner, C., Köhler, L., Arias-Aguilar, D., Schuldt, B., 2014. The importance of hydraulic conductivity and wood density to growth performance in eight tree species from a tropical semi-dry climate. For. Ecol. Manage. 330: 126-136. https://doi.org/10.1016/j.foreco.2014.06.039
  • Lavoir, A.V., Duffet, C., Mouillot, F., Rambal, S., Ratte, J.P., Schnitzler, J.P., Staudt, M., 2011. Scaling-up leaf monoterpene emissions from a water limited Quercus ilex woodland. Atmos. Environ. 45: 2888-2897. https://doi.org/10.1016/j.atmosenv.2011.02.005
  • Lenth, R.V., 2014. lsmeans: Least-Squares Means. R package version 2.10. http://CRAN.R-project.org/package=lsmeans
  • Llusià. J., Peñuelas, J., Asensio, D., Munné-Bosch, S., 2005. Airborne limonene confers limited thermotolerance to Quercus ilex. Physiol. Plant. 123: 40-48. https://doi.org/10.1111/j.1399-3054.2004.00426.x
  • Llusià J., Roahtyn, S., Yakir, D., Rotenberg, E., Seco, R., Guenther, A., Peñuelas, J., 2015. Photosynthesis, stomatal conductance and terpene emission response to water availability in dry and mesic Mediterranean forests. Trees 11 pp. https://doi.org/10.1007/s00468-015-1317-x
  • López-Pantoja, G., Domínguez, L., Sánchez-Osorio, I., 2008. Mark-recapture estimates of the survival and recapture rates of Cerambyx welensii Küster (Coleoptera Cerambycidae) in a cork oak dehesa in Huelva (Spain). Cent. Eur. J. Biol. 3: 431-441. https://doi.org/10.2478/s11535-008-0044-3
  • Loreto, F., Ciccioli, P., Cecinato, A., Bracaleoni, E., Frattoni, M., Tricoli, D., 1996. Influence of environmental α-pinene from factors and air composition on the emission of Quercus ilex leaves. Plant. Physiol. 110: 267-275. https://doi.org/10.1104/pp.110.1.267
  • Loreto, F., Pollastri, S., Fineschi, S., Velikovac, V., 2014. Volatile isoprenoids and their importance for protection against environmental constraints in the Mediterranean area. Environ. Exp. Bot. 103: 99-106. https://doi.org/10.1016/j.envexpbot.2013.09.005
  • Millar. J.G., Hanks, L.M., 2017. Chemical ecology of cerambycid beetles. In: Wang, Q., (ed.), Cerambycidae of the world: biology and management. Boca Raton: CRC Press/Taylor & Francis.
  • Munné-Bosch, S., Peñuelas, J., Asensio, D., Llusià, J., 2004. Airborne ethylene may alter antioxidant protection and reduce tolerance of holm oak to heat and drought stress. Plant Physiol. https://doi.org/10.1104/pp.104.050005
  • Niinemets, U., Seufert, G., Steinbrecher, R., Tenhunen, J.D., 2002. A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytol. 153: 257-275. https://doi.org/10.1046/j.0028-646X.2001.00324.x
  • Núñez, L., Plaza, J., Pérez-Pastor, R., Pujadas, M., Gimeno, B., Bermejo, V., García-Alonso, S., 2002. High water vapour pressure deficit influence on Quercus ilex and Pinus pinea field monoterpene emission in the central Iberian Peninsula (Spain). Atmos. Environ. 36: 4441-4452. https://doi.org/10.1016/S1352-2310(02)00415-6
  • Oksanen, F., Blanchet, G., Kindt, R. et al., 2015. vegan: Community Ecology Package. R package version 2.2-1. http://CRAN.R-project.org/package=vegan
  • Oliveira, G., Werner, C., Mertens, C., Correia, O., 1993. Influencia de la posición de la copa sobre la fenología y las relaciones hídricas en alcornoque (Quercus suber). Actas del I. Congreso Forestal Español 1:277-282.
  • Pearse, I.S., Gee, W.S., Beck, J.J., 2013. Headspace Volatiles from 52 oak species advertise induction, species identity, and evolution, but not Defense. J. Chem. Ecol. 39: 90-100. https://doi.org/10.1007/s10886-012-0224-5
  • Peñuelas, J., Llusià, J., 2002. Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol. 155: 227-237. https://doi.org/10.1046/j.1469-8137.2002.00457.x
  • Peñuelas, J., Llusia, J., 1999. Seasonal emission of monoterpenes by the Mediterranean tree Quercus ilex in field conditions: Relations with photosynthetic rates, temperature and volatility. Physiol. Plantarum 105: 641-647. https://doi.org/10.1034/j.1399-3054.1999.105407.x
  • Peñuelas, J., Llusià, J., Asensio, D., Munné-Bosch, S., 2005. Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant. Cell. Environ. 28: 278-86. https://doi.org/10.1111/j.1365-3040.2004.01250.x
  • Piayda, A., Dubbert, M., Rebmann, C., Kolle, O., Costa, Silva, F., Correia, A., Pereira, J.S., Werner, C., Cuntz, M., 2014. Drought impact on carbon and water cycling in a Mediterranean Quercus suber L. woodland during the extreme drought event in 2012. Biogeosciences 11: 7159-7178. https://doi.org/10.5194/bg-11-7159-2014
  • Pio, C.A., Silva, P.A., Cerqueira, M.A., Nunes, T.V., 2005. Diurnal and seasonal emissions of volatile organic compounds from cork oak (Quercus suber) trees. Atmos. Environ. 39: 1817-1827. https://doi.org/10.1016/j.atmosenv.2004.11.018
  • Sánchez-Osorio, I., López-Pantoja, L., Tapias, R., Pareja-Sánchez, E., Domínguez, L., 2019. Monoterpene emission of Quercus suber L. highly infested by Cerambyx welensii Küster Ann. For. Sci. 89. https://doi.org/10.1007/s13595-019-0879-y
  • Tenhunen, J.D., Reynolds, J.F., Lange, O.L., Dougherty, R.L., Harley, P.C., Kummerow, J., Rambal, S., 1989. QUINTA: a physiologically based growth simulator for drought adapted woody by mediterranean sclerophyll shrubs during summer drought. In: Pereira, J.S., Landsberg, J.J. (eds.), Biomass . NATO ASI series, Applied Science, Vol. 166. Dordrecht, The Netherlands: Kluwer, 135-68. https://doi.org/10.1007/978-94-009-2348-5_9
  • Torres-Vila, L.M., Mendiola-Díaz, F.J., Sánchez-González, Á., 2017. Dispersal differences of a pest and a protected Cerambyx species (Coleoptera: Cerambycidae) in oak open woodlands: a mark-recapture comparative study. Ecol. Entomol. 42: 18-32. https://doi.org/10.1111/een.12355
  • Vaz, M., Pereira, J.S., Gazarini, L.C., David, T.S., David, J.S. Rodrigues, A. Maroco, J., Chaves, M.M., 2010. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber). Tree Physiol. 30: 946-956. https://doi.org/10.1093/treephys/tpq044
  • Vaz, M., Maroco, J., Ribeiro, N., Gazarini, L.C., Pereira, J.S., Chaves, M.M., 2011. Leaf-level responses to light in two co-occurring Quercus (Quercus ilex and Quercus suber): leaf structure, chemical composition and photosynthesis. Agroforest. Syst. 82:173-181. https://doi.org/10.1007/s10457-010-9343-6
  • Vicente, C., (2013) Evaluación del grado de afectación por larvas de Cerambyx welensii Küster 1846 (Col., Cerambycide) del arbolado de las dehesas (Quercus suber, L y Q. rotundifolia, Lam.) en Extremadura y su relación con algunas variables importantes del ecosistema. Doctoral Thesis, University of Extremadura, Badajoz, Spain.
  • WWF/Adena, 2006. La dehesa en los Programas de desarrollo rural 2007-13. Propuesta. 34 pp.