TiO2 as white pigment and valorization of the waste coming from its production

  1. Gázquez, Manuel Jesús 1
  2. Moreno, Silvia María Pérez 23
  3. Bolívar, Juan Pedro 23
  1. 1 Department of Applied Physics, Marine Research Institute (INMAR), University of Cadiz, Cádiz, Spain
  2. 2 Department of Integrated Sciences, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
  3. 3 Research Centre of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain
Book:
Titanium Dioxide (Tio₂) and Its Applications

Publisher: Elsevier

ISBN: 978-0-12-819960-2

Year of publication: 2021

Pages: 311-335

Type: Book chapter

DOI: 10.1016/B978-0-12-819960-2.00011-0 GOOGLE SCHOLAR lock_openOpen access editor

Abstract

Titanium dioxide pigment, also called “titanium white” (or Pigment White 6), is an essential element in many manufacturing processes with minerals of significant economic importance: ilmenite, rutile, and anatase. Approximately 95% of titanium is consumed in the form of titanium dioxide (TiO2), a white pigment used for coating, paper, printing ink, paint, plastic, food, and, in addition, pharmaceutical, cosmetic, and textile industries. TiO2 pigment is characterized by its purity, refractive index, particle size, and surface properties, and its use as white pigment is due mainly to its high refractive index. Titanium dioxide pigments are manufactured by two routes: (1) the sulfate process (about 40% of total TiO2 production) and (2) the chloride process (about 60%). Valorization of the waste generated from industrial processes is an important area of the circular economy and, for that reason, the valorization studies of the wastes and coproducts generated will be analyzed.

Bibliographic References

  • Rudnick, (2003), vol. 3
  • Williams, (1990), pp. 1609
  • Woodruff, (2017), pp. T1
  • J. Fisher, T.A. Egerton, Titanium Compounds, Inorganic. Kirk-Othmer Encyclopedia of Chemical Technology, 2001.
  • IAEA, Safety Reports Series No.76. Radiation Protection and NORM Residue Management in the Titanium Dioxide and Related Industries. IAEA Safety Standards and Related Publications, 2012, 1–100.
  • Chernet, (1999), Miner. Petrol., 67, pp. 21, 10.1007/BF01165113
  • D.S. Wallis, G.M. Oakes, Heavy mineral sands in eastern Australia, in: F.E. Hughes (Ed.), 1990 Geology of the Mineral Deposits of Australia & Papua New Guinea The AusIMM, Melbourne Mono 14, v2, 1599–1608.
  • U.S. Geological Survey, Mineral Commodity Summaries 2019, U.S. Geological Survey, 2019, 200 p, Available from: https://doi.org/10.3133/70202434.
  • Pesl, (2002), Miner. Eng., 15, pp. 971, 10.1016/S0892-6875(02)00136-X
  • Pistorius, (2003), Metall. Mater. Trans. B, 34, pp. 581, 10.1007/s11663-003-0027-8
  • Guéguin, (2007), Miner. Process. Extr. Metall. Rev., 28, pp. 1, 10.1080/08827500600564242
  • Adipuri, (2011), Int. J. Min. Process., 100, pp. 166, 10.1016/j.minpro.2011.07.005
  • Guo, (2014), Hydrometallurgy, 147–148, pp. 134, 10.1016/j.hydromet.2014.05.009
  • Xiang, (2019), Chem. Eng. Process., 147, pp. 107774, 10.1016/j.cep.2019.107774
  • Mackey, (1994), Rev. Extr. Process., 46, pp. 59
  • Murphy, (2006), pp. 987
  • Gázquez, (2009), J. Hazard. Mater., 166, pp. 1429, 10.1016/j.jhazmat.2008.12.067
  • Braun, (1992), Prog. Org. Coat., 20, pp. 105, 10.1016/0033-0655(92)80001-D
  • Sward, (1972)
  • Gázquez, (2014), Mater. Sci. Appl. (MSA), 5, pp. 441
  • IARC, Monographs on the Evaluation of Carcinogenic Risks to Humans, 2010, 93.
  • Risk & Policy Analysts. Titanium Dioxide Industry Consortium. Risk Management Options Analysis for Titanium Dioxide (TiO2), 2018.
  • G. Sørensen, C.H. Fischer, S. Bähring, K.P. Almtoft, K. Tønning, S.H. Mikkelsen, et al., Occurrence and effects of nanosized anatase titanium dioxide in consumer products, The Danish Environmental Protection Agency Strandgade, 2014.
  • Linak, (2005)
  • ASTM, (1988), pp. 100
  • ISO, Titanium dioxide pigments for paints—Part 1: Specifications and methods of test. This standard was last reviewed and confirmed in 2015, ISO 591-1:2000, 2000.
  • Fujishima, (2006), C.R. Chim., 9, pp. 750, 10.1016/j.crci.2005.02.055
  • Lo, (2015), Thin Solid Films, 579, pp. 14, 10.1016/j.tsf.2015.02.029
  • Zhong, (2012), J. Hazard. Mater., 243, pp. 340, 10.1016/j.jhazmat.2012.10.042
  • Yemmireddy, (2015), Food Control, 57, pp. 82, 10.1016/j.foodcont.2015.04.009
  • Alrousan, (2009), Water Res., 43, pp. 47, 10.1016/j.watres.2008.10.015
  • Bogdan, (2015), Nano Res. Lett., 10, pp. 1, 10.1186/s11671-015-1023-z
  • Dalrymple, (2010), Appl. Catal. B: Environ., 98, pp. 27, 10.1016/j.apcatb.2010.05.001
  • Laxma, (2017), Environ. Res., 154, pp. 296, 10.1016/j.envres.2017.01.018
  • Mori, (2015), J. Prosthodont. Res., 59, pp. 249, 10.1016/j.jpor.2015.06.001
  • Daisuke, (2005), Prosthodont. Res. Pract., 4, pp. 69, 10.2186/prp.4.69
  • Arai, (2009), J. Oral. Rehabil., 13, pp. 902, 10.1111/j.1365-2842.2009.02012.x
  • Wypych, (2015)
  • Alince, (1989), Colloids Surf., 39, pp. 39, 10.1016/0166-6622(89)80177-5
  • Li, (2011), Nanoscale, 3, pp. 3115, 10.1039/c1nr10185d
  • Fei Yin, (2013), Phys. Chem. Chem. Phys., 15, pp. 4844, 10.1039/c3cp43938k
  • Fujiwara, (2015), Pathobiology, 82, pp. 243, 10.1159/000439404
  • Gkika, (2018), Toxicology, 393, pp. 83, 10.1016/j.tox.2017.11.008
  • Lodén, (2005), J. Pharm. Sci., 94, pp. 781, 10.1002/jps.20295
  • Wiench, (2011), Toxicol. Sci., 123, pp. 264, 10.1093/toxsci/kfr148
  • United States EPA, (2009)
  • Schilling, (2010), Photochem. Photobiol. Sci., 9, pp. 495, 10.1039/b9pp00180h
  • Newman, (2009), J. Am. Acad. Dermatol., 61, pp. 685, 10.1016/j.jaad.2009.02.051
  • Bedford, (2010), ACS Appl. Mater. Interfaces, 2, pp. 2448, 10.1021/am1005089
  • Peláez, (2012), Appl. Catal. B: Environ., 125, pp. 331, 10.1016/j.apcatb.2012.05.036
  • Radetic, (2013), J. Photochem. Photobiol., C, 16, pp. 62, 10.1016/j.jphotochemrev.2013.04.002
  • Zhaodan, (2018), Open. J. Adv. Mater. Res., 821–822, pp. 901
  • Gupta, (2017), J. Ind. Pollut. Control, 33, pp. 1633
  • Montazer, (2010), Photochem. Photobiol., 9, pp. 255, 10.1111/j.1751-1097.2009.00680.x
  • Lian, (2015), Innov. Food Sci. Emerg., 33, pp. 145, 10.1016/j.ifset.2015.10.008
  • Kubacka, (2015), Sci. Rep., 4, pp. 4134, 10.1038/srep04134
  • Li, (2009), Int. J. Chem., 1, pp. 57, 10.5539/ijc.v1n1p57
  • Rahman, (2014), Am. J. Eng. Res. (AJER), 9, pp. 87
  • Saravanan, (2007), AUTEX Res. J., 7, pp. 11
  • FDA, Summary of Color Additives for Use in the United States in Foods, Drugs, Cosmetics, and Medical Devices, United States Food and Drug Administration, 2015. <http://www.fda.gov/ForIndustry/ColorAdditives/ColorAdditiveInventories/ucm115641.htm#cfr>.
  • Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives [2011] OJ L 295/1.
  • P.M. Kuznesof, M.V. Rao, Titanium dioxide. Chemical and Technical Assessment, Titanium Dioxide (CTA), 2006.
  • Ortlieb, (2010), Mater. Sci., 14, pp. 42
  • Meacock, (1997), J. Sci. Food Agric., 73, pp. 221, 10.1002/(SICI)1097-0010(199702)73:2<221::AID-JSFA708>3.0.CO;2-U
  • Hwang, (2019), Nanomaterials, 9, pp. 1175, 10.3390/nano9081175
  • Dorier, (2019), Mutat. Res., Genet. Toxicol. Environ. Mutagen., 845, pp. 402980, 10.1016/j.mrgentox.2018.11.004
  • Yang, (2014), Environ. Sci. Technol., 48, pp. 6391, 10.1021/es500436x
  • Weir, (2012), Environ. Sci. Technol., 46, pp. 2242, 10.1021/es204168d
  • Macnicoll, (2015), J. Nanopart. Res., 17, pp. 66, 10.1007/s11051-015-2862-3
  • Anca, (2017), Cellulose, 24, pp. 3911, 10.1007/s10570-017-1383-x
  • Babaei, (2016), Appl. Food Biotechnol., 3, pp. 115
  • Chawengkijwanich, (2008), Int. J. Food Microbiol., 123, pp. 288, 10.1016/j.ijfoodmicro.2007.12.017
  • H. Hosseini, S. Shojaee-Aliabadi, S.M. Hosseini, L.Mirmoghtadaie. Nanoantimicrobials in Food Industry. In Nanotechnology Applications in Food; Oprea, A.E., Grumezescu, A.M., (Eds). Academic Press: Cambridge, MA, USA, 2017; Chapter 11; 223–243. ISBN 978-0-12-811942-6. Available from: https://doi.org/10.1016/B978-0-12-811942-6.00011-X
  • D.L. Orihuela & J.L. Marijuan, Sulfatos de hierro: Su uso agrícola. University of Huelva, Huelva (2003) (In Spanish).
  • Contreras, (2014), Constr. Build. Mater., 72, pp. 31, 10.1016/j.conbuildmat.2014.08.091
  • Dondi, (2010), Ceram. Int., 36, pp. 2461, 10.1016/j.ceramint.2010.08.007
  • Contreras, (2013), J. Environ. Manage., 128, pp. 625, 10.1016/j.jenvman.2013.06.015
  • Llanes, (2018), Environ. Sci. Pollut. Res., 25, pp. 24695, 10.1007/s11356-018-2498-9
  • Meng, (2016), Trans. Nonferrous Met. Soc. China, 26, pp. 1696, 10.1016/S1003-6326(16)64247-4
  • Meng, (2016), Hydrometallurgy, 161, pp. 112, 10.1016/j.hydromet.2016.02.001
  • Zapata-Carbonell, (2019), Ecol. Eng., 132, pp. 31, 10.1016/j.ecoleng.2019.03.013
  • Gazquez, (2013), Cem. Concr. Compos., 37, pp. 76, 10.1016/j.cemconcomp.2012.12.003
  • Pérez-moreno, (2013), Thermochim. Acta, 552, pp. 114, 10.1016/j.tca.2012.10.021
  • Zheng, (2008), J. Alloys Compd., 461, pp. 459, 10.1016/j.jallcom.2007.07.025
  • DeVries, (2011), Environ. Sci., 2, pp. 6