A common paragenesis and two A.M.D. pollution sources in the Iberian Pyrite Belt, SW Spainproposal of a natural attenuation model in the affected fluvial network

  1. J. A. Grande 1
  2. A. T. Luís 1
  3. M. Santisteban 1
  4. J. M. Dávila 1
  5. A. Sarmiento 1
  6. J. C. Fortes 1
  7. E. Ferreira da Silva 2
  8. F. Córdoba 1
  1. 1 Universidad de Huelva

    Universidad de Huelva

    Huelva, España

    ROR https://ror.org/03a1kt624

  2. 2 Universidade de Aveiro

    Universidade de Aveiro

    Aveiro, Portugal

    ROR https://ror.org/00nt41z93

Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Year of publication: 2022

Volume: 48

Issue: 2

Pages: 191-204

Type: Article

DOI: 10.1007/S41513-022-00188-1 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Journal of iberian geology: an international publication of earth sciences


The Iberian Pyrite Belt (IPB), in the southwest of Europe, is one of the largest sulfde metallogenetic provinces in the world which is characterized by high levels of AMD pollution in a large extent of its fuvial network. The main objective of this work is the characterization of the processes controlling the water chemistry as well as the evolution and natural attenuation processes of waters from two diferent AMD producing focus, with a common paragenesis (San Telmo and El Carpio mines). Both joining into the same fuvial network. The present work allowed to comply the main objective, detecting the existence of the natural attenuation process for these two mining watercourses, which are globally controlled by diferent chemical and biological processes and individually afected by dissolution, hydrolysis, precipitation, co-precipitation processes, being the biological indicators dominated by algae from Euglena and Klebsormidium genera very important in the natural attenuation phenomena.

Bibliographic References

  • Aroba, J., Grande, J. A., Andújar, J. M., de la Torre, M. L., & Riquelme, J. C. (2007). Application of fuzzy logic and data mining techniques as tools for qualitative interpretation of acid mine drainage processes. Environmental Geology, 53, 135–145.
  • Borrego, J., Morales, J. A., de la Torre, M. L., & Grande, J. A. (2002). Geochemical characteristics of heavy metal pollution in surface sediments of the Tinto and Odiel river estuary (Southwestern Spain). Environmental Geology, 41, 785–796.
  • de la Torre, M. L., Sánchez-Rodas, D., Grande, J. A., & Gómez, T. (2010). Relationships between pH, colour and heavy metal concentrations in the Tinto and Odiel rivers (southwest Spain). Hydrology Research, 41(5), 406–413.
  • Egal, M., Casiot, C., Morin, G., Elbaz-Poulichet, F., Cordier, M.-A., & Bruneel. (2010). An updated insight into the natural attenuation of As concentrations in Reigous Creek (southern France). Applied Geochemistry, 25(12), 1949–1957.
  • Elbaz-Poulichet, F., Braungardt, C., Achterberg, E., Morley, N., Cossa, D., Beckers, J., Nomérange, P., Cruzado, A., & Leblanc, M. (2001). Metal biogeochemistry in the Tinto-Odiel rivers (Southern Spain) and in the Gulf of Cadiz: a synthesis of the results of TOROS project. Continental Shelf Research, 21(18–19), 1961–1973.
  • Grande, J. A., Andújar, J. M., Aroba, J., & de la Torre, M. L. (2010). Presence of As in the fuvial network due to AMD processes in the Riotinto mining area (SW Spain): A fuzzy logic qualitative model. Journal of Hazardous Materials, 176(1–3), 395–401.
  • Grande, J. A., Aroba, J., Andujar, J. M., Gómez, T., de la Torre, M. L., Borrego, J., Romero, S., Barranco, C., & Santisteban, M. (2011). Tinto versus Odiel: two AMD polluted rivers and an unresolved issue. An artificial intelligence approach. Water Resources Management, 25, 3575–3594 (South West Spain). Hydrology Research, 41(5), 406–413.
  • Grande, J. A., Borrego, J., & Morales, J. A. (2000). A study of heavy metal pollution in Tinto-Odiel estuary in southwestern Spain using factor analysis. Environmental Geology, 29(1), 1095–1101.
  • Grande, J. A., dela Torre, M. L., Valente, T., Fernández, J. P., Borrego, J., Santisteban, M., Cerón, J. C., & Sánchez-Rodas, D. (2015). Stratifcation of metal and sulphate loads in acid mine drainage receiving water dams—variables regionalization by cluster analysis. Water Environment Research, 87(7), 626–634.
  • Grande, J. A., Pérez-Ostalé, E., de la Torre, M. L., Valente, T., Borrego, J., Perez, J. A., Santisteban, M., Garrido, R., & Romero, E. (2016). Drenaje ácido de mina en la faja pirítica ibérica: técnicas de estudio e inventario de explotaciones. University of Huelva. ISBN: 978-84-16061-54-9.
  • Grande, J. A. (2016). Drenaje Ácido de Mina en la Faja Pirítica Ibérica: Técnicas de estudio e inventario de explotaciones. Servicio de Publicaciones de la Universidad de Huelva, Huelva, España (p. 345).
  • Gray, N. F. (1996). The use of an objective index for the assessment of the contamination of surface water and groundwater by Acid Mine Drainage. Journal of the Chartered Institution of Water and Environmental Management, 10(5), 332–340.
  • Leblanc, M., Morales, J. M., Borrego, J., & Elbaz-Poulichet, F. (2000). 4500 year-old mining pollution in Southwestern Spain: Long-term implications for modern mining pollution. Economic Geology, 95, 655–662.
  • López-Pamo, E., Sanchez-España, J., Ercilla, M. D., Pastor, E. S., & Andres, J. R. (2009). Cortas mineras inundadas de la Faja Pirítica: inventario e hidroquímica. Instituto Geológico y Minero De España, Serie: Medio Ambiente, 13, 279.
  • Luís, A. T., Alexander, A. C., Almeida, S. F. P., Ferreira da Silva, E., & Culp, J. M. (2013). Benthic diatom communities in streams from zinc mining areas in continental (Canada) and Mediterranean climates (Portugal). Water Quality Research Journal of Canada, 48(2), 180–191.
  • Luís, A. T., Grande, J. A., Durães, N., Dávila, J. M., Santisteban, M., Almeida, S. F. P., Sarmiento, A. M., de la Torre, M. L., Fortes, J. C., & Ferreira da Silva, E. (2019). Biogeochemical characterization of surface waters in the Aljustrel mining area (South Portugal). Environmental Geochemistry and Health., 211, 736–744.
  • Nelson, C. H., & Lamothe, P. J. (1993). Heavy metal anomalies in the Tinto and Odiel River and estuary system, Spain. Estuaries, 16, 496–511.
  • Nieto, J. M., Sarmiento, A. M., Olías, M., Cánovas, C. R., Riba, I., Kalman, J., & Delvalls, A. (2007). Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environment International, 33(4), 445–455.
  • Olías, M., Nieto, J. M., Sarmiento, A. M., Canovas, C. R., & Galvan, L. (2010). Water quality in the future Alcolea Reservoir (Odiel River, SW Spain): a clear example of the inappropriate management of water resources in Spain. Water Resources Management, 25(1), 201–215.
  • Park, J. H., Han, Y.-S., & Ahn, J. S. (2016). Comparison of arsenic coprecipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream. Water Research, 106, 295–303.
  • Pérez-Ostalé, E., Grande, J.A., de la Torre, M.L., Valente, T., Cerón, J.C. and Santisteban, M. (2013). Inventory of mining and quantifcation of afected areas in the Iberian Pyrite Belt (SW Spain). Methodological contribution to environmental management. International Multidisciplinary Scientifc GeoConference: SGEM; Sofa Tomo 1, 613-620. Sofa: Surveying Geology & Mining Ecology Management (SGEM).613-621.
  • Pérez-Ostalé (2014) Caracterización ambiental de estructuras mineras en la Faja Pirítica Ibérica como soporte metodológico de gestión territorial. PhD Thesis, University of Huelva.
  • Pinedo, Y. V. (1963). Piritas de Huelva. Summa.
  • Plumlee, G.S., Smith, K.S., Montour, M.R., Ficklin, W.H., Mosier, E.L. (1999). Geologic controls on the composition of natural waters and mine waters draining diverse mineral-deposit types. In L. H. Filipek, G. S. Plumlee (Ed.), Reviews in Economic Geology. The environmental geochemistry of mineral deposits, (vol 6B, pp. 373−432). Society of Economic Geologists, INC.
  • Rodier, J. (1996). L’analyse de l’eau: Eaux naturelles, eaux résiduaires, eau de mer. Dunod, Paris.
  • Sáinz, A., Grande, J. A., & de la Torre, M. L. (2004). Characterization of heavy metal discharge into the ria of Huelva. Environment International, 30, 557–566.
  • Sáinz, A., Grande, J. A., & de la Torre, M. L. (2005). Application of a systemic approach to the study of pollution of the Tinto and Odiel rivers (Spain). Environmental Monitoring and Assessment, 102, 435–445.
  • Sáinz, A., Grande, J. A., de la Torre, M. L., & Sánchez-Rodas, D. (2002). Characterisation of sequential leachate discharges of mining waste rock dumps in the Tinto and Odiel rivers. Journal of Envionmental Management, 64(4), 345–353.
  • Sánchez-España, J., López Pamo, E., Santofmia, E., Andrés, J. R., Martín-Rubi, J. A. (2005). The natural attenuation of two acidic efuents in tharsis and La zarza-perrunal mines (Iberian Pyrite Belt, Huelva, Spain). Environmental Earth Sciences, 49, 253−266.
  • Santisteban, M., Grande, J. A., de la Torre, M. L., Valente, T., PerezOstalé, E., & Garcia-Pérez, M. (2016). Study of the transit and attenuation of pollutants in a water reservoir receiving acid mine drainage in the Iberian pyrite belt (SW Spain). Water Science and Technology, 16(1), 128–134.
  • Sarmiento, A.M., (2007). Estudio de la contaminación por drenajes ácidos de mina de las aguas superfciales en la cuenca del río Odiel (SO España). Ph, Thesis, Universidad de Huelva.
  • Sarmiento, A. M., Grande, J. A., Luís, A. T., Dávila, J. M., Fortes, J. C., Santisteban, M., Curiel, J., de la Torre, M. L., & Ferreira da Silva, E. (2018). Negative pH values in an open-air radical environment afected by acid mine drainage. Characterization and proposal of a hydrogeochemical model. Science of the Total Environment, 644, 1244–1253.
  • Sarmiento, M., Olías, M., Nieto, J. M., Cánovas, C., & Delgado, J. (2009). Natural attenuation processes in two water reservoirs receiving acid mine drainage. Science of the Total Environment, 407, 2051–2062.
  • USEPA. (1994). Technical document: acid mine drainage prediction. USEPA.
  • Valente, T., Antunes, M., Sequeira Braga, A., Prudêncio, M. I., Marques, R., & Pamplona, J. (2012). Mineralogical attenuation for metallic remediation in a passive system for mine water treatment. Environmental Earth Sciences, 66, 39–54.
  • Van der Graaf, C. M., Sánchez-España, J., Yusta, I., Ilin, A., Shetty, S. A., Bale, N. J., et al. (2020). Biosulfdogenesis mediates natural attenuation in acidic mine pit lakes. Microorganisms, 8(9), 1275.
  • Viers, J., Grande, J. A., Zouiten, C., Freydier, R., Masbou, J., Valente, T., et al. (2018). Are Cu isotopes a useful tool to trace metal sources and processes in acid mine drainage (AMD) context? Chemosphere, 193, 1071–1079.
  • Younger, P. L., Banwart, S., & Hedin, R. (2002). Mine water: hydrology, pollution, remediation. Kluwer.