¿De verdad sabes lo que quieres buscar?Expansión guiada visualmente de la cadena de búsqueda usando ontologías y grafos de conceptos

  1. Villa Cordero, Manuel de la
  2. García Pérez, Sebastián
  3. Maña López, Manuel Jesús
Journal:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Year of publication: 2011

Issue: 47

Pages: 21-29

Type: Article

More publications in: Procesamiento del lenguaje natural

Sustainable development goals

Abstract

Many reports talk about the shortage of terms commonly used in the search strings, making it difficult to effectively discriminate relevant documents from the user. Search engines return thousands of documents recovered, leading to inadequate results, with no semantic connection with the consultation and little to do with the user's needs. This is heightened in a biomedical field where the patients does not usually dominate the specialized vocabulary needed for the precise definition of their information needs. We present a method of expansion and enrichment of the search string by creating a visual model diagram, a graph of semantically related concepts with the help of ontologies as UMLS and Freebase.

Bibliographic References

  • Baeza-Yates, R. y Ribeiro-Neto, B. 1999. Modern Information Retrieval. Capítulo 5. Addison-Wesley Longman Publishing Company, New York.
  • Belkin, N. J. 2000. Helping People Find What They Don't Know. Communications of the ACM, 43(8):58-61.
  • Belkin, N., Cool, C., Kelly, D., Lin, S. J., Park, S. Y., Perez-Carballo, J. y Sikora, C. 2001. Iterative exploration, design and evaluation of support for query reformulation in interactive information retrieval. Information Processing & Management, 37(3):403-434.
  • Bhogal, J., Macfarlane, A., Smith, P. (2007). A review of ontology based query expansion. Information Processing & Management, 43(4), 866-886. Pergamon Press, Inc.
  • De Buenaga M.,, Gómez-Hidalgo J.M., Díaz-Agudo,B. 1997. Using WordNet to complement training in formation in text categorization. Proceedings of RANLP-97. Tzigov Chark, Bulgary.
  • de la Villa, M., Muñoz A., Millán M., Maña, M. 2010. A Biomedical Information Retrieval System based on Clustering for Mobile Devices. BioSEPLN10, Workshop on Language Technology applied to biomedical and health documents. SEPLN 2010 (Valencia).
  • Efthimiadis, E. 1996. Query expansion. Annual Review of Information Science and Technology (ARIST), 31:121-187
  • Finkelstein L., Gabrilovich E., Matias Y., Rivlin E., Solan Z., Wolfman G, y Ruppin E. 2002. Placing search in context: the concept revisited. TOIS, 20(1), 116–131.
  • Fu, G. et al. 2005. Ontology-Based Spatial Query Expansion in Information Retrieval ODBASE: OTM Confederated International Conferences.
  • Gonzalo, J. et al. 1998. Indexing with WordNet synsets can improve text retrieval Coling-ACL 98.
  • Hearst, M. A. 1999. User Interfaces and Visualization. En R. Baeza-Yates y B. Ribeiro-Neto, eds., Modern Information Retrieval , págs. 257-323. Addison-Wesley Longman Publishing Company, New York.
  • Herrero-Solana, V., Hassan, Y. 2006. Metodologías para el desarrollo de Interfaces Visuales de Recuperación de Información: análisis y comparación. Information Research, 11(3)
  • Hersh, W., Bhupatiraju, R. T., y Price, S. 2003. Phrases, Boosting, and Query Expansion Using External Knowledge Resources for Genomic Information Retrieval. TREC (503–509).
  • Huang, L. 2000. A survey on web information retrieval technologies. In ECSL. New York.
  • Jansen, B. J., Spink, A. and Koshman, S. 2007. Web searcher interaction with the Dogpile.com metasearch engine. Journal of the American Society for Information Science and Technology, 58: 744–755.
  • Kochhar, S., Mazzocchi, S. y Paritosh, P. 2010. The Anatomy of a Large-Scale Human Computation Engine. KDDHCOMP’10, Washington, DC (USA).
  • Lin, X., Soergel, D. y Marchionini, G. 1991. A Self-organizing Semantic Map for Information Retrieval. Proc. ACM Int. SIGIR ’91.
  • Magnini, B., y Speranza, M. 2002. Merging global and specialized linguistic ontologies. In Proceedings of the workshop Ontolex-2002 ontologies and lexical knowledge bases, LREC-2002 (pp. 43–48).
  • Mandala, R., Tokunaga, T. y Tanaka, H. 2000. Query expansion using heterogeneous thesauri. Inf. Process. Manage. 36(3): 361-378
  • Marcos, M. C. 2005. Visual elements in search systems and information retrieval. Yearbook Hipertext.net, n. 3 (May 2005).
  • Miller, G.A. 1995. WordNet: A Lexical Database for English. Communications of the ACM Vol. 38, No. 11: 39-41.
  • Navigli, R., y Velardi, P. 2003. An analysis of ontology-based query expansion strategies workshop on adaptive text extraction and mining (ATEM 2003). In 14th European conference on machine learning (ECML 2003.
  • O’Madadhain, J., Fisher, D., Smyth, P., White, S., and Boey, Y.-B. 2005. Analysis and visualization of network data using JUNG. Journal of Statistical Software , VV:1-35.
  • Rindflesh, T.C., Fiszman, M., Libbus, B. 2005. Semantic interpretation for the biomedical research literature. Capítulo 14. Medical Informatics. Knowledge Management and Data Mining in Biomedicine. Springer's Integrated Series in Information Systems.
  • Safar, B., Kefi, H. 2003. Domain ontology and Galois lattice structure for query refinement. Proceedings of the 15th IEEE international conference on tools with artificial intelligence, Sacramento, California, pp. 597–601.
  • Shneiderman, B. 1992. Tree visualization with tree-maps: 2-d space-filling approach. ACM Transactions on Graphics, v. 11 n. 1, p.92-99, Jan. 1992.
  • Song M., Song I-Y., Hu X., Allen R.B. 2007. Integration of association rules and ontologies for semantic query expansion. Data & Knowledge Engineering 63. 63–75
  • Voorhees, E. 1993. Using wordnet to disambiguate word senses for text retrieval. ACM SIGIR, 171–180.