Descubrimiento de conocimiento en grafos multi-relacionales

  1. Almagro Blanco, Pedro
Dirigida por:
  1. Fernando Sancho Caparrini Director/a

Universidad de defensa: Universidad de Sevilla

Fecha de defensa: 30 de junio de 2017

Tribunal:
  1. Mario de Jesús Pérez Jiménez Presidente/a
  2. José Luis Ruiz Reina Secretario/a
  3. Gonzalo Antonio Aranda Corral Vocal
  4. Juan Luis Suárez Sánchez de León Vocal
  5. Óscar Cordón García Vocal

Tipo: Tesis

Teseo: 469629 DIALNET lock_openIdus editor

Resumen

Ante el reducido abanico de metodologías para llevar a cabo tareas de aprendizaje automático relacional, el objetivo principal de esta tesis es realizar un análisis de los métodos existentes, modificando u optimizando en la medida de lo posible algunos de ellos, y aportar nuevos métodos que proporcionen nuevas vías para abordar esta difícil tarea. Para ello, y sin nombrar objetivos relacionados con revisiones bibliográficas ni comparativas entre modelos e implementaciones, se plantean una serie de objetivos concretos a ser cubiertos: 1. Definir estructuras flexibles y potentes que permitan modelar fenómenos en base a los elementos que los componen y a las relaciones establecidas entre éstos. Dichas estructuras deben poder expresar de manera natural propiedades complejas (valores continuos o categóricos, vectores, matrices, diccionarios, grafos,...) de los elementos, así como relaciones heterogéneas entre éstos que a su vez puedan poseer el mismo nivel de propiedades complejas. Además, dichas estructuras deben permitir modelar fenómenos en los que las relaciones entre los elementos no siempre se dan de forma binaria (intervienen únicamente dos elementos), sino que puedan intervenir un número cualquiera de ellos. 2. Definir herramientas para construir, manipular y medir dichas estructuras. Por muy potente y flexible que sea una estructura, será de poca utilidad si no se poseen las herramientas adecuadas para manipularla y estudiarla. Estas herramientas deben ser eficientes en su implementación y cubrir labores de construcción y consulta. 3. Desarrollar nuevos algoritmos de aprendizaje automático relacional de caja negra. En aquellas tareas en las que nuestro objetivo no es obtener modelos explicativos, podremos permitirnos utilizar modelos de caja negra, sacrificando la interpretabilidad a favor de una mayor eficiencia computacional. 4. Desarrollar nuevos algoritmos de aprendizaje automático relacional de caja blanca. Cuando estamos interesados en una explicación acerca del funcionamiento de los sistemas que se analizan, buscaremos modelos de aprendizaje automático de caja blanca. 5. Mejorar las herramientas de consulta, análisis y reparación para bases de datos. Algunas de las consultas a larga distancia en bases de datos presentan un coste computacional demasiado alto, lo que impide realizar análisis adecuados en algunos sistemas de información. Además, las bases de datos en grafo carecen de métodos que permitan normalizar o reparar los datos de manera automática o bajo la supervisión de un humano. Es interesante aproximarse al desarrollo de herramientas que lleven a cabo este tipo de tareas aumentando la eficiencia y ofreciendo una nueva capa de consulta y normalización que permita curar los datos para un almacenamiento y una recuperación más óptimos. Todos los objetivos marcados son desarrollados sobre una base formal sólida, basada en Teoría de la Información, Teoría del Aprendizaje, Teoría de Redes Neuronales Artificiales y Teoría de Grafos. Esta base permite que los resultados obtenidos sean suficientemente formales como para que los aportes que se realicen puedan ser fácilmente evaluados. Además, los modelos abstractos desarrollados son fácilmente implementables sobre máquinas reales para poder verificar experimentalmente su funcionamiento y poder ofrecer a la comunidad científica soluciones útiles en un corto espacio de tiempo