From ultrafine to coarse particlesvariability and source apportionment of atmospheric aerosol levels in the urban Mediterranean climate

  1. Brines Pérez, Mariola
Supervised by:
  1. Xavier Querol Carceller Director
  2. Jeroni Lorente Castelló Director
  3. Manuel Dall'osto Director

Defence university: Universitat de Barcelona

Fecha de defensa: 13 November 2015

Committee:
  1. Jesús de la Rosa Díaz Chair
  2. Bernat Codina Sánchez Secretary
  3. Gary Fuller Committee member

Type: Thesis

Teseo: 408039 DIALNET lock_openTDX editor

Abstract

Air pollution is a major environmental and public health concern, especially in urban areas where both emission sources and population are concentrated. The pollution sources and the evolution of aerosols and gaseous pollutants once emitted into the atmosphere depend on geographical, climatological and meteorological conditions of the study area. In the Western Mediterranean Basin, the coastal city of Barcelona (Spain) is characterized by a warm dry climate, scarce precipitation and high urban density, as well as being geographically constrained by the coastal range thus hindering the dispersion of pollutants. Within this context, the intensive SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies) campaign developed in October 2010 in Barcelona consisted on concurrent aerosol measurements at different sites in the city region, with the aim of studying the aerosol temporal variability and spatial distribution, progressively moving away from urban aerosol sources. Several sites were selected: Road Site (RS) and Urban Background (UB) were located on ground levels, whereas Torre Mapfre (TM) and Torre Collserola (TC), representative of the urban/suburban environment were located at certain height (150 m a.s.l. and 415 m a.s.I., respectively). Finally, the Regional Background site (RB) located 50 km from the city allowed for the study of the transport of urban emissions outside the city. Results from simultaneous measurements of aerosol size distributions at the RS, UB, TC and RB with a Scanning Mobility Particle Sizer (SMPS) were studied after performing a k-means cluster analysis on the combined data sets. This allowed the classification of all size distributions in 9 clusters: three clusters account for traffic conditions (30% of the time), three account for background pollution (54%) and three described specific special cases (16%). Traffic emissions heavily impact the closest sites, and some of these particles evaporate when the air mass move away from the traffic hot spots. The analysis of long term SMPS data sets in the high insolation urban environments of Barcelona, Madrid, Brisbane, Rome and Los Angeles also by k-means clustering analysis revealed traffic and nucleation events as the two most relevant sources of ultrafine particles (44-63% and 14-19% of the time, respectively). Moreover, nucleation particles accounted for 21% of total N, evidencing the importance of nucleation processes to ultrafine particles concentrations in high insolation urban areas. The urban nucleation events consist on particles bursts starting around midday and lasting 3-4 hours while growing to 20-40 nm, opposite to regional nucleation “banana shape” events which usually grow to larger sizes. Regarding the composition of the PM1 fraction (PM mass levels below 1 ?m) at the RS and UB during SAPUSS, a source apportionment PMF analysis was carried out. The resulting 9 factors could be broadly grouped in the following categories: road traffic (23-36% of PM1 mass), industrial and shipping emissions (42%), secondary aerosols (29%) and biomass burning (1%). The joint analysis of organic and inorganic species was able to identify a high number of sources resulting in in a more complete and realistic study of the aerosol sources in Barcelona. The study of the PM10 fraction (PM mass levels below 10 ?m) at the RS, UB, TM and TC during SAPUSS by means of a PMF source apportionment study enabled the assessment of the spatial variability in vertical and horizontal levels. The 8 resulting factors accounted for primary traffic emissions (Exhaust and wear and Road dust, 19- 38% of PM10 mass), primary inorganic aerosols (Mineral dust and Aged marine, 28- 39%), industry (Heavy oil and Industrial, 5-7%) and secondary aerosols (Sulphate and Nitrate,28-36%). The main factors influencing the different sources concentration at each site were: proximity to the emission source, air mass origin and meteorological parameters. The complete study of aerosol fractions affecting the urban area of Barcelona and similar urban environments (Madrid, Brisbane, Roma and Los Angeles), from ultrafine to coarse particles, enables the identification of the main sources affecting each size fraction in particular and aerosols in general. Owing to the results obtained and the different techniques applied, recommendations regarding air pollution studies and air quality measures have been proposed.