Processes affecting the efficiency of limestone, aragonite and dolostone in passive treatments for AMD

  1. Offeddu, Francesco Giancarlo
Dirigida por:
  1. Maarten W. Saaltink Director/a
  2. Jordi Cama Robert Director/a

Universidad de defensa: Universitat Politècnica de Catalunya (UPC)

Fecha de defensa: 30 de octubre de 2015

Tribunal:
  1. Ignasi Casanova Hormaechea Presidente/a
  2. Rafael Pérez López Secretario
  3. Shingo Yokoyama Vocal

Tipo: Tesis

Teseo: 411074 DIALNET lock_openTDX editor

Resumen

Waters from mines (acid mine drainage-AMD), contain elevated concentrations of SO-24, Fe and other contaminant metals, which can persist in the environment during centuries. The purpose of AMD treatments is to retain metals and to neutralize the acidity. One of the employed treatment systems is the anoxic limestone drainage (ALD), characterized by low maintenance and cost. The efficiency of the ALD is however limited by secondary mineral precipitation (ppt) causing the passivation (pass) of the limestone grains and the pores clogging. The presence of aqueous sulfate leads to gypsum (gyp) ppt, which contributes to pass and affects the ALD¿s efficiency. This PhD study is focused on the loss of reactivity of calcite (cal), aragonite (ar) and dolomite (dol) due to grain coating or clogging of porosity. To this end, three types of experiments were conducted: column, batch and in-situ AFM experiments. Columns experiments were carried out injecting synthetic acidic solutions (sulfate with Fe(III) or Al pH 2-3, H2SO4) at constant flow (6x10-4 and 1x10-3 L m-2 s-1) in the columns packed with cal, ar or dol grains. The columns worked efficiently removing aqueous metals as long as cal dissolved and buffered the solution pH. However, Ca released from dissolving cal and the sulfate in solution, promoted gyp ppt on the cal surfaces preventing his dissolution (diss). This pass process limited the efficiency of the columns. Larger input sulfate concentrations or higher pH led to shorter pass times. Observations with X-ray microtomography and X-ray microdiffraction showed the coating of gyp on the cal and secondary oxyhydroxides between the grains. This favored the formation of preferential flow paths, isolating regions of non-reacted grains. An improved experimental design (mixing limestone grains and glass beads) minimized the formation of these preferential flow paths. Experimental results have been modeled with the CrunchFlow reactive transport code. Fitting of the results required a decrease in the reactive surface area of cal, which is consistent with the pass process. Batch experiments (pH 2 H2SO4 solution equilibrated with respect to CaSO4¿2H2O) were performed to study the coupled reactions of diss of cal, ar and dol and ppt of gyp. The three carbonate minerals acted as carbonate substrates on which gyp grew. Along the experiments three stages were distinguished: gyp ppt induction time, diss of the carbonate substrate coupled with gyp ppt, and achievement of equilibrium with respect to the carbonate mineral. The induction time was similar during diss of cal and ar (same diss rate). During diss of the carbonate minerals the pH raised from 2 to ~7, decreasing the carbonate mineral diss rate and stopping the gyp ppt as equilibrium with respect to CaCO3 was approached. The gyp ppt rates were similar when cal and ar dissolved, regardless the morphology of substrate. In-situ atomic force microscopy (AFM) experiments were performed to study the cal and dol diss and gyp ppt in Na2SO4 and CaSO4 solutions (pH 2-6). The carbonate diss took place at the (104) cleavage surfaces in sulfate-rich solutions undersaturated with respect to gyp, by the formation of characteristic rhombohedral-shaped etch pits. Rounding of the etch pit corners was observed as solutions approached close-to-equilibrium conditions with respect to cal. The calculated diss rates of cal at pH 4.8 and 5.6 agreed with the values reported in the literature. When using solutions previously equilibrated with respect to gyp, gyp ppt coupled with cal diss showed short gyp nucleation induction times. The gyp precipitate quickly coated the cal surface, forming arrow-like forms parallel to the crystallographic orientations of the cal etch pits. Gyp ppt coupled with dol diss was slower than that of cal, indicating the diss rate to be the rate-controlling step. The resulting gyp coating partially covered the surface during the experimental duration of a few hours.