Data Pre-processing and Data Generation in the Student Flowcase Study

  1. Luís Cavique 12
  2. Paulo Pombinho 2
  3. Tallón-Ballesteros, Antonio J. 3
  4. Luís Correia 2
  1. 1 Universidade Aberta
    info

    Universidade Aberta

    Lisboa, Portugal

    ROR https://ror.org/02rv3w387

  2. 2 Universidade de Lisboa
    info

    Universidade de Lisboa

    Lisboa, Portugal

    ROR https://ror.org/01c27hj86

  3. 3 Universidad de Huelva
    info

    Universidad de Huelva

    Huelva, España

    ROR https://ror.org/03a1kt624

Libro:
Intelligent Data Engineering and Automated Learning – IDEAL 2020. 21st International Conference: Guimarães, Portugal; November 4–6, 2020. Proceedings
  1. Cesar Analide (ed. lit.)
  2. Paulo Novais (ed. lit.)
  3. David Camacho (ed. lit.)
  4. Hujun Yin (ed. lit.)

Editorial: Springer International Publishing AG

ISBN: 978-3-030-62362-3 978-3-030-62361-6 978-3-030-62364-7 978-3-030-62365-4

Año de publicación: 2020

Título del volumen: Part II

Volumen: 2

Páginas: 35-43

Congreso: Intelligent Data Engineering and Automated Learning – IDEAL (21. 2020. Guimarães)

Tipo: Aportación congreso

Resumen

Education covers a range of sectors from kindergarten to higher education. In the education system, each grade has three possible outcomes: dropout, retention and pass to the next grade. In this work, we study the data from the Department of Statistics of Education and Science (DGEEC) of the Education Ministry. DGEEC maintains those outcomes for each school year, therefore, this study seeks a longitudinal view based on student flow. The document reports the data pre-processing, a stochastic model based on the pre-processed data and a data generation process that uses the previous model.