A preliminary evaluation of a low-cost multispectral sensor for non-destructive evaluation of olive fruits’ fat content

  1. Aquino, Arturo 1
  2. Noguera, Miguel 1
  3. Millan, Borja 1
  4. Mejías Borrero, Andrés 1
  5. Ponce Real, Juan Manuel 1
  6. Andújar-Márquez, José Manuel 1
  1. 1 Universidad de Huelva

    Universidad de Huelva

    Huelva, España

    ROR https://ror.org/03a1kt624

XLIII Jornadas de Automática: libro de actas: 7, 8 y 9 de septiembre de 2022, Logroño (La Rioja)
  1. Carlos Balaguer Bernaldo de Quirós (coord.)
  2. José Manuel Andújar Márquez (coord.)
  3. Ramon Costa Castelló (coord.)
  4. Carlos Ocampo Martínez (coord.)
  5. Jesús Fernández Lozano (coord.)
  6. Matilde Santos Peñas (coord.)
  7. José Enrique Simó Ten (coord.)
  8. Montserrat Gil Martínez (coord.)
  9. Jose Luis Calvo Rolle (coord.)
  10. Raúl Marín Prades (coord.)
  11. Eduardo Rocón de Lima (coord.)
  12. Elisabet Estévez Estévez (coord.)
  13. Pedro Jesús Cabrera Santana (coord.)
  14. David Muñoz de la Peña Sequedo (coord.)
  15. José Luis Guzmán Sánchez (coord.)
  16. José Luis Pitarch Pérez (coord.)
  17. Oscar Reinoso García (coord.)
  18. Oscar Déniz Suárez (coord.)
  19. Emilio Jiménez Macías (coord.)
  20. Vanesa Loureiro Vázquez (coord.)

Publisher: Servizo de Publicacións ; Universidade da Coruña

ISBN: 978-84-9749-841-8

Year of publication: 2022

Pages: 475-478

Congress: Jornadas de Automática (43. 2022. Logroño)

Type: Conference paper


This study presents a preliminary evaluation of a low-cost multispectral device for the non-destructive assessment of olive fruits’ fat content. The developed device integrates a multispectral sensor, with a spectral response of 18 channels falling in a range from 410 to 940 nm, a calibrated light source, and a programmable board, in a ‘gun’-shaped device whose trigger activates sample reading. The device was used to measure 50 intact olive samples, which were subsequently chemically analysed to determine their actual fat content. Then, the multispectral readings from the 18 channels were used as input variables to train a neural network, using the actual fat content registers as reference data. The measured results, in terms of root-mean-square-error and coefficient of determination, shows promising capabilities of the developed low-cost device in the prediction of fat content of intact olives, what stands up for further development and experimentation.