A new enigmatic lacustrine trackway in the upper Miocene of the Sierra de las Cabras (Jumilla, Murcia, Spain)

  1. Eduardo Mayoral 1
  2. Cayetano Herrero
  3. Emilio Herrero
  4. Javier Martín Chivelet 2
  5. Félix Pérez Lorente 3
  1. 1 Universidad de Huelva

    Universidad de Huelva

    Huelva, España

    ROR https://ror.org/03a1kt624

  2. 2 Universidad Complutense de Madrid

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  3. 3 Universidad de La La Rioja
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Year of publication: 2023

Volume: 49

Issue: 3-4

Pages: 237-256

Type: Article

DOI: 10.1007/S41513-023-00222-W DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Journal of iberian geology: an international publication of earth sciences


A new fossil trackway is described in the upper lacustrine Miocene in the Prebetic Zone of the Iberian Peninsula, in Jumilla town (Murcia region) called Aenigmatipodus jumillensis nov. ichnogen. nov. ichnosp. This trackway consists of a pattern made up of sets of three tracks or triads, which are subparallel to each other, arranged in alternate groups. Each track presents a depression formed by a central body that is three times as long as it is wide, with straight or slightly curved walls, with two shorter bodies placed at the ends, one of the ends being shorter and more pronounced than the opposite, which is longer and stretched. All the biomechanical possibilities compatible with an anatomical design that could leave the impression of three alternate triads of tracks are analysed. The supports are only from the extremities on one side of the organism (left or right), the displacement being by translation. It is concluded that it had to be a large arthropod (metre scale), with a hexapod or decapod (less probably octopod), which had to be dragged laterally by a current in a very shallow lake or wetland environment. To date, no fossil organism is known, nor its current equivalent, that corresponds to these characteristics.

Bibliographic References

  • Baena, J. (1981). Mapa Geológico de España E 1:50.000, 2ª serie. Hoja nº 869 (Jumilla). IGME. Secretaría de Publicaciones, Ministerio de Industria.
  • Bolton, H. (1911). On a collection of insect-remains from the south wales coalfeld. Quarterly Journal of the Geological Society, 67, 149–174. https://doi.org/10.1144/GSL.JGS.1911.067.01-04.06
  • Bolton, H. (1921). A monograph of the fossil insects of the British coal measures. Part I (pp. 1–80). Paleontographical Society. https:// doi.org/10.5962/bhl.title.2477
  • Briggs, D. E. K., & Rolfe, W. D. I. (1983). A giant arthropod trackway from the Lower Mississipian of Pennsylvania. Journal of Paleontology, 57, 377–390.
  • Bromley, R. G., Uchman, A., Gregory, M. R., & Martin, A. J. (2003). Hillichnus lobosensis igen. et isp. nov., a complex trace fossil produced by tellinacean bivalves, Paleocene, Monterey, California, USA. Paleogeography, Palaeoclimatology, Palaeoecology, 192, 157–186. https://doi.org/10.1016/S0031-0182(02)00684-3
  • Brown, T. (1999). The science and art of tracking (p. 219). Berkley Books.
  • Clark, P., & Webber, W. (1991). A redescription of Macrocheira kaempferi (Temminck, 1836) zoeas with a discussion of the classifcation of the Majoidea Samouelle, 1819 (Crustacea: Brachyura). Journal of Natural History, 25(5), 1259–1279. https://doi.org/10. 1080/00222939100770781
  • Crimes, T. P. (1970). Trilobite tracks and other trace fossils from the Upper Cambrian of North Wales. Geological Journal, 7, 47–68. https://doi.org/10.1002/gj.3350070104
  • De Grave, S., Pentchef, N. D., Ahyong, S. T., Chan, T.-Y., Crandall, K. A., Dworschak, P. C., Felder, D. L., Feldmann, R. M., Fransen, C. H. J. M., Goulding, L. Y. D., Lemaitre, R., Low, M. E. Y., Martin, J. W., Ng, P. K. L., Schweitzer, C. E., Tan, S. H., Tshudy, D., & Wetzer, R. (2009). A classifcation of living and fossil genera of decapod crustaceans. Rafes Bulletin of Zoology, 21, 1–109.
  • De Miguel, D., Azanza, B., & Morales, J. (2019). Regional impacts of global climate change: A local humid phase in central Iberia in a late Miocene drying world. Palaeontology, 62, 77–92. https://doi. org/10.1111/pala.12382
  • Feldmann, R. M., & Schweitzer, C. E. (2016). Giant spider crab from the St. Marys Formation (Miocene) in Calvert County, Maryland, USA. Bulletin of the Mizunami Fossil Museum, 42, 23–28.
  • Gatesy, S. M. (2003). Direct and indirect tracks feature: What sediment did a dinosaur touch? Ichnos, 10, 91–98. https://doi.org/10.1080/ 10420940390255484
  • Getty, P. R., Sproule, R., Stimson, M. R., & Lyons, P. C. (2017). Invertebrate fossils from the Pennsylvanian Rhode Island Formation of Massachusetts, USA. Atlantic Geology, 53, 185–206. https://doi. org/10.4138/atlgeol.2017.007
  • Gilmore, C. W. (1926). Fossil footprints from the Grand Canyon. Smithsonian Miscellaneous Collections, 77, 1–41.
  • Herrero, C., Herrero, E., Martín-Chivelet, J., & Pérez-Lorente, F. (2022). Vertebrate ichnofauna from Sierra de las Cabras tracksite (Late Miocene, Jumilla, SE Spain). Mammalian ichnofauna. Journal of Iberian Geology, 48, 241–279. https://doi.org/10.1007/ s41513-022-00192-5
  • Herrero, C., Herrero, E., Martín-Chivelet, J., & Pérez-Lorente, F. (2023). Avian ichnofauna from Sierra de las Cabras tracksite (late Miocene, Jumilla, SE Spain). Journal of Iberian Geology, 49, 31–46. https://doi.org/10.1007/s41513-023-00205-x
  • Jiménez-Moreno, G., Fauquette, S., & Suc, J. P. (2010). Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Review of Palaeobotany and Palynology, 162, 403–415. https://doi.org/10.1016/j.revpalbo. 2009.08.001
  • Lamarck, J. B. (1818). Histoire naturelle des Animaux sans Vertèbres. Deterville.
  • Linnaeus, C. (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, diferentiis, synonymis, locis. Editio decima, reformata [10th revised edition] (vol. 1, 824 pp). Laurentius Salvius. https://doi.org/10.5962/bhl.title.542
  • Martín, J. M., Braga, J. C., Aguirre, J., & Puga-Bernabéu, A. (2009). History and evolution of the North-Betic Strait (Prebetic Zone, Betic Cordillera): A narrow, early Tortonian, tidal-dominated, Atlantic-Mediterranean marine passage. Sedimentary Geology, 216, 80–90. https://doi.org/10.1016/j.sedgeo.2009.01.005
  • Ng, P. K. L., Guinot, D., & Davie, P. J. F. (2008). Systema Brachyurorum: Part I. An annotated checklist of extant Brachyuran crabs of the world. Rafes Bulletin of Zoology, 17, 1–286.
  • Pasini, G., Baldanza, A., Gallo, L. M., Garassino, A., & Karasawa, H. (2016). Anomuran and brachyuran trackways and resting trace from the Pliocene of Valduggia (Piedmont, NW Italy): Environmental, behavioural, and taphonomic implications. Natural History Sciences. Atti Della Società Italiana Di Scienze Naturali e Del Museo Civico Di Storia Naturale in Milano, 3, 35–48. https://doi.org/10.4081/nhs.2016.281
  • Requeta, L. E., Hernández Medrano, N., & Pérez-Lorente, F. (2006–7). La Pellejera: Descripción y aportaciones. Heterocronía y variabilidad de un yacimiento con huellas de dinosaurio de La Rioja (España). Zubía monográfco, 18(1), 21–114.
  • Richter, R. (1954). Fährte eines ‘Riesenkrebses’ im Rheinischen Schiefergebirge. Natur Und Volk, 84, 261–269.
  • Roca, E., Sans, M., & Koyi, H. (2006). Polyphase deformation of diapiric areas in models and in the eastern Prebetics (Spain). American Association of Petroleum Geologists Bulletin, 90, 115–136.
  • Rossi, C., Vilas, L., & Arias, C. (2015). The Messinian marine to nonmarine gypsums of Jumilla (Northern Betic Cordillera, SE Spain): Isotopic and Sr concentration constraints on the origin of parent brines. Sedimentary Geology, 328, 96–114. https://doi.org/10. 1016/j.sedgeo.2015.08.007
  • Rubinat, M., Roca, E., Escalas, M., Queralt, P., Ferrer, O., & Ledo, J. J. (2013). The infuence of basement structure on the evolution of the Bicorb-Quesa Diapir (eastern Betics Iberian Peninsula): Contractive thin-skinned deformation above a pre-existing extensional basement fault. International Journal of Earth Sciences, 102, 25–41. https://doi.org/10.1007/s00531-012-0789-9
  • Sarjeant, W. A. S. (1989). “Ten paleoichnological commandments”: A standardized procedure for the description of fossil vertebrate footprints. In D. D. Gillette & M. G. Lockley (Eds.), Dinosaur Tracks and Traces (pp. 369–370). Cambridge Univ.
  • Temminck, C. J. (1836). Coup-d'oeil sur la faune des Iles de la Sonde et de l'Empire du Japon. Discours préliminaire destiné a servir d'introduction a la Faune du Japon. pp. 30. https://doi.org/10. 5962/bhl.title.119899
  • Thulborn, R. A., & Wade, M. (1989). A footprint as a history of movement. In D. D. Gillette & M. G. Lockley (Eds.), En Dinosaurs Tracks and Traces (pp. 51–56). Cambridge Univ Press.
  • Van Dam, J. A. (2006). Geographic and temporal patterns in the late Neogene (12–3 Ma) aridifcation of Europe: The use of small mammals as paleoprecipitation proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 190–218. https://doi.org/10. 1016/j.palaeo.2006.03.025
  • Walker, F. (1871). Catalogue of the Specimens of Dermaptera saltatoria in the Collection of the British Museum. Part V. Supplement to the Catalogue of Blattariae, British Museum (Natural History) London. British Museum (Natural History), London 40.
  • Wood, G. (1983). The Guinness Book of Animal Facts and Feats. Sterling Pub Co Inc; Subsequent edition (December 31, 1899).