Alejandro J.
Rodríguez-Luis
Publications by the researcher in collaboration with Alejandro J. Rodríguez-Luis (48)
2024
-
A double-zero bifurcation in a Lorenz-like system
Nonlinear Dynamics, Vol. 112, Núm. 3, pp. 2305-2330
-
Homoclinic behavior around a degenerate heteroclinic cycle in a Lorenz-like system
Chaos, Solitons and Fractals, Vol. 186
2022
-
Double-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz system
Communications in Nonlinear Science and Numerical Simulation, Vol. 111
2019
-
Study of a dynamical system with a strange attractor and invariant tori
Physics Letters, Section A: General, Atomic and Solid State Physics, Vol. 383, Núm. 13, pp. 1441-1449
-
Study of a simple 3D quadratic system with homoclinic flip bifurcations of inward twist case Cin
Communications in Nonlinear Science and Numerical Simulation, Vol. 77, pp. 324-337
2018
-
A Review on Some Bifurcations in the Lorenz System
Understanding Complex Systems (Springer Verlag), pp. 3-36
-
Comments on “Shilnikov chaos and Hopf bifurcation in three-dimensional differential system”
Optik, Vol. 155, pp. 251-256
2016
-
Comment on “Study on the reliable computation time of the numerical model using the sliding temporal correlation method”
Theoretical and Applied Climatology, Vol. 126, Núm. 3-4, pp. 797-799
-
Resonances of periodic orbits in the Lorenz system
Nonlinear Dynamics, Vol. 84, Núm. 4, pp. 2111-2136
-
Superluminal periodic orbits in the Lorenz system
Communications in Nonlinear Science and Numerical Simulation, Vol. 39, pp. 220-232
-
Takens-Bogdanov bifurcations and resonances of periodic orbits in the Lorenz system
No Lineal 2016. International Conference on Nonlinear Mathematics and Physics: 7-10, 2016. book of abstracts (Juan F.R. Archilla), pp. 51-51
-
Takens-Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz system
Communications in Nonlinear Science and Numerical Simulation, Vol. 30, Núm. 1-3, pp. 328-343
2015
-
Analysis of the T-point-Hopf bifurcation in the Lorenz system
Communications in Nonlinear Science and Numerical Simulation, Vol. 22, Núm. 1-3, pp. 676-691
-
Comments on “Invariant algebraic surfaces of the generalized Lorenz system”
Zeitschrift fur Angewandte Mathematik und Physik, Vol. 66, Núm. 3, pp. 1295-1297
-
Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems
Nonlinear Dynamics, Vol. 79, Núm. 2, pp. 885-902
2014
-
Centers on center manifolds in the Lorenz, Chen and Lü systems
Communications in Nonlinear Science and Numerical Simulation, Vol. 19, Núm. 4, pp. 772-775
-
Comment on "A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family", P. Yu, X.X. Liao, S.L. Xie, Y.L. Fu [Commun Nonlinear Sci Numer Simulat 14 (2009) 2886-2896]
Communications in Nonlinear Science and Numerical Simulation
-
Comment on "existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems" [Appl. Math. Comput. 218 (2012) 11859-11870]
Applied Mathematics and Computation, Vol. 244, pp. 49-56
-
Comments on "dynamics of the general Lorenz family" by Y. Liu and W. Pang
Nonlinear Dynamics, Vol. 76, Núm. 1, pp. 887-891
-
Comments on "the Chen system revisited"
Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms, Vol. 21, Núm. 4-5, pp. 275-280