Publications by the researcher in collaboration with Alejandro J. Rodríguez-Luis (48)

2024

  1. A double-zero bifurcation in a Lorenz-like system

    Nonlinear Dynamics, Vol. 112, Núm. 3, pp. 2305-2330

  2. Homoclinic behavior around a degenerate heteroclinic cycle in a Lorenz-like system

    Chaos, Solitons and Fractals, Vol. 186

2022

  1. Double-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz system

    Communications in Nonlinear Science and Numerical Simulation, Vol. 111

2019

  1. Study of a dynamical system with a strange attractor and invariant tori

    Physics Letters, Section A: General, Atomic and Solid State Physics, Vol. 383, Núm. 13, pp. 1441-1449

  2. Study of a simple 3D quadratic system with homoclinic flip bifurcations of inward twist case Cin

    Communications in Nonlinear Science and Numerical Simulation, Vol. 77, pp. 324-337

2016

  1. Comment on “Study on the reliable computation time of the numerical model using the sliding temporal correlation method”

    Theoretical and Applied Climatology, Vol. 126, Núm. 3-4, pp. 797-799

  2. Resonances of periodic orbits in the Lorenz system

    Nonlinear Dynamics, Vol. 84, Núm. 4, pp. 2111-2136

  3. Superluminal periodic orbits in the Lorenz system

    Communications in Nonlinear Science and Numerical Simulation, Vol. 39, pp. 220-232

  4. Takens-Bogdanov bifurcations and resonances of periodic orbits in the Lorenz system

    No Lineal 2016. International Conference on Nonlinear Mathematics and Physics: 7-10, 2016. book of abstracts (Juan F.R. Archilla), pp. 51-51

  5. Takens-Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz system

    Communications in Nonlinear Science and Numerical Simulation, Vol. 30, Núm. 1-3, pp. 328-343

2015

  1. Analysis of the T-point-Hopf bifurcation in the Lorenz system

    Communications in Nonlinear Science and Numerical Simulation, Vol. 22, Núm. 1-3, pp. 676-691

  2. Comments on “Invariant algebraic surfaces of the generalized Lorenz system”

    Zeitschrift fur Angewandte Mathematik und Physik, Vol. 66, Núm. 3, pp. 1295-1297

  3. Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems

    Nonlinear Dynamics, Vol. 79, Núm. 2, pp. 885-902

2014

  1. Centers on center manifolds in the Lorenz, Chen and Lü systems

    Communications in Nonlinear Science and Numerical Simulation, Vol. 19, Núm. 4, pp. 772-775

  2. Comment on "A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family", P. Yu, X.X. Liao, S.L. Xie, Y.L. Fu [Commun Nonlinear Sci Numer Simulat 14 (2009) 2886-2896]

    Communications in Nonlinear Science and Numerical Simulation

  3. Comment on "existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems" [Appl. Math. Comput. 218 (2012) 11859-11870]

    Applied Mathematics and Computation, Vol. 244, pp. 49-56

  4. Comments on "dynamics of the general Lorenz family" by Y. Liu and W. Pang

    Nonlinear Dynamics, Vol. 76, Núm. 1, pp. 887-891

  5. Comments on "the Chen system revisited"

    Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms, Vol. 21, Núm. 4-5, pp. 275-280