ANTONIO
ALGABA DURAN
CATEDRATICO DE UNIVERSIDAD
Fernando
Fernández Sánchez
Publications by the researcher in collaboration with Fernando Fernández Sánchez (32)
2024
-
Homoclinic behavior around a degenerate heteroclinic cycle in a Lorenz-like system
Chaos, Solitons and Fractals, Vol. 186
2018
-
Comments on “Shilnikov chaos and Hopf bifurcation in three-dimensional differential system”
Optik, Vol. 155, pp. 251-256
2016
-
Comment on “Study on the reliable computation time of the numerical model using the sliding temporal correlation method”
Theoretical and Applied Climatology, Vol. 126, Núm. 3-4, pp. 797-799
2015
-
Analysis of the T-point-Hopf bifurcation in the Lorenz system
Communications in Nonlinear Science and Numerical Simulation, Vol. 22, Núm. 1-3, pp. 676-691
-
Comments on “Invariant algebraic surfaces of the generalized Lorenz system”
Zeitschrift fur Angewandte Mathematik und Physik, Vol. 66, Núm. 3, pp. 1295-1297
2014
-
Centers on center manifolds in the Lorenz, Chen and Lü systems
Communications in Nonlinear Science and Numerical Simulation, Vol. 19, Núm. 4, pp. 772-775
-
Comment on "A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family", P. Yu, X.X. Liao, S.L. Xie, Y.L. Fu [Commun Nonlinear Sci Numer Simulat 14 (2009) 2886-2896]
Communications in Nonlinear Science and Numerical Simulation
-
Comment on "existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems" [Appl. Math. Comput. 218 (2012) 11859-11870]
Applied Mathematics and Computation, Vol. 244, pp. 49-56
-
Comments on "dynamics of the general Lorenz family" by Y. Liu and W. Pang
Nonlinear Dynamics, Vol. 76, Núm. 1, pp. 887-891
-
Comments on "the Chen system revisited"
Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms, Vol. 21, Núm. 4-5, pp. 275-280
-
Comments on 'Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces'
Physica D: Nonlinear Phenomena
-
On Darboux polynomials and rational first integrals of the generalized Lorenz system
Bulletin des Sciences Mathematiques, Vol. 138, Núm. 3, pp. 317-322
2013
-
Chen's attractor exists if Lorenz repulsor exists: The Chen system is a special case of the Lorenz system
Chaos, Vol. 23, Núm. 3
-
Comment on 'Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization' [Chaos, Solitons and Fractals 44 (2011) 137-144]
Chaos, Solitons and Fractals
-
Comment on 'Šilnikov-type orbits of Lorenz-family systems' [Physica A 375 (2007) 438-446]
Physica A: Statistical Mechanics and its Applications
-
Comments on "non-existence of Shilnikov chaos in continuous-time systems"
Applied Mathematics and Mechanics (English Edition), Vol. 34, Núm. 9, pp. 1175-1176
-
Comments on the paper "chaotic motions of a two-dimensional airfoil with cubic nonlinearity in supersonic flow"
Aerospace Science and Technology
-
On shil'nikov analysis of homoclinic and heteroclinic orbits of the t system
Journal of Computational and Nonlinear Dynamics, Vol. 8, Núm. 2
-
The Lü system is a particular case of the Lorenz system
Physics Letters, Section A: General, Atomic and Solid State Physics, Vol. 377, Núm. 39, pp. 2771-2776
2012
-
Comment on "Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system" [J. Math. Anal. Appl. 315 (2006) 106-119]
Journal of Mathematical Analysis and Applications, Vol. 392, Núm. 1, pp. 99-101