Publicaciones en las que colabora con MANUEL MERINO MORLESIN (53)

2024

  1. A double-zero bifurcation in a Lorenz-like system

    Nonlinear Dynamics, Vol. 112, Núm. 3, pp. 2305-2330

  2. Homoclinic behavior around a degenerate heteroclinic cycle in a Lorenz-like system

    Chaos, Solitons and Fractals, Vol. 186

2022

  1. Double-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz system

    Communications in Nonlinear Science and Numerical Simulation, Vol. 111

2019

  1. Study of a dynamical system with a strange attractor and invariant tori

    Physics Letters, Section A: General, Atomic and Solid State Physics, Vol. 383, Núm. 13, pp. 1441-1449

  2. Study of a simple 3D quadratic system with homoclinic flip bifurcations of inward twist case Cin

    Communications in Nonlinear Science and Numerical Simulation, Vol. 77, pp. 324-337

2016

  1. Analysis of the Hopf-zero bifurcation and their degenerations in a quasi-Lorenz system

    No Lineal 2016. International Conference on Nonlinear Mathematics and Physics: 7-10, 2016. book of abstracts (Juan F.R. Archilla), pp. 22-22

  2. Comment on “Study on the reliable computation time of the numerical model using the sliding temporal correlation method”

    Theoretical and Applied Climatology, Vol. 126, Núm. 3-4, pp. 797-799

  3. Resonances of periodic orbits in the Lorenz system

    Nonlinear Dynamics, Vol. 84, Núm. 4, pp. 2111-2136

  4. Superluminal periodic orbits in the Lorenz system

    Communications in Nonlinear Science and Numerical Simulation, Vol. 39, pp. 220-232

  5. Takens-Bogdanov bifurcations and resonances of periodic orbits in the Lorenz system

    No Lineal 2016. International Conference on Nonlinear Mathematics and Physics: 7-10, 2016. book of abstracts (Juan F.R. Archilla), pp. 51-51

  6. Takens-Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz system

    Communications in Nonlinear Science and Numerical Simulation, Vol. 30, Núm. 1-3, pp. 328-343

2015

  1. Analysis of the T-point-Hopf bifurcation in the Lorenz system

    Communications in Nonlinear Science and Numerical Simulation, Vol. 22, Núm. 1-3, pp. 676-691

  2. Comments on “Invariant algebraic surfaces of the generalized Lorenz system”

    Zeitschrift fur Angewandte Mathematik und Physik, Vol. 66, Núm. 3, pp. 1295-1297

  3. Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems

    Nonlinear Dynamics, Vol. 79, Núm. 2, pp. 885-902