Alejandro J.
Rodríguez-Luis
Publicaciones en las que colabora con Alejandro J. Rodríguez-Luis (72)
2024
-
A double-zero bifurcation in a Lorenz-like system
Nonlinear Dynamics, Vol. 112, Núm. 3, pp. 2305-2330
-
Homoclinic behavior around a degenerate heteroclinic cycle in a Lorenz-like system
Chaos, Solitons and Fractals, Vol. 186
2022
-
Double-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz system
Communications in Nonlinear Science and Numerical Simulation, Vol. 111
-
Study of a homoclinic canard explosion from a degenerate center
Applied Mathematics Letters, Vol. 132
2021
-
Asymptotic expansions for a degenerate canard explosion
Physica D: Nonlinear Phenomena, Vol. 418
-
High-order approximation of heteroclinic bifurcations in truncated 2d-normal forms for the generic cases of hopf-zero and nonresonant double hopf singularities
SIAM Journal on Applied Dynamical Systems, Vol. 20, Núm. 1, pp. 403-437
2020
-
Analytical approximation of cuspidal loops using a nonlinear time transformation method
Applied Mathematics and Computation, Vol. 373
-
Analytical approximation of the canard explosion in a van der Pol system with the nonlinear time transformation method
Physica D: Nonlinear Phenomena, Vol. 406
-
Asymptotic expansions for a family of non-generic canards using parametric representation
Applied Mathematics Letters, Vol. 106
-
Computation of all the coefficients for the global connections in the Z2-symmetric Takens-Bogdanov normal forms
Communications in Nonlinear Science and Numerical Simulation, Vol. 81
-
High-Order Analysis of Canard Explosion in the Brusselator Equations
International Journal of Bifurcation and Chaos, Vol. 30, Núm. 5
-
High-Order Analysis of Global Bifurcations in a Codimension-Three Takens-Bogdanov Singularity in Reversible Systems
International Journal of Bifurcation and Chaos, Vol. 30, Núm. 1
-
High-order study of the canard explosion in an aircraft ground dynamics model
Nonlinear Dynamics, Vol. 100, Núm. 2, pp. 1079-1090
2019
-
A nonlinear time transformation method to compute all the coefficients for the homoclinic bifurcation in the quadratic Takens–Bogdanov normal form
Nonlinear Dynamics, Vol. 97, Núm. 2, pp. 979-990
-
Revisiting the analysis of a codimension-three Takens–Bogdanov bifurcation in planar reversible systems
Nonlinear Dynamics, Vol. 96, Núm. 4, pp. 2567-2580
-
Study of a dynamical system with a strange attractor and invariant tori
Physics Letters, Section A: General, Atomic and Solid State Physics, Vol. 383, Núm. 13, pp. 1441-1449
-
Study of a simple 3D quadratic system with homoclinic flip bifurcations of inward twist case Cin
Communications in Nonlinear Science and Numerical Simulation, Vol. 77, pp. 324-337
2018
-
A Review on Some Bifurcations in the Lorenz System
Understanding Complex Systems (Springer Verlag), pp. 3-36
-
Comments on “Shilnikov chaos and Hopf bifurcation in three-dimensional differential system”
Optik, Vol. 155, pp. 251-256
2017
-
Comments on “Asymptotically stable equilibrium points in new chaotic systems”
Nova scientia, Vol. 9, Núm. 19, pp. 902-905