Sucesión de sumas parciales como proceso iterativo infinitoun paso hacia la comprensión de las series numéricas desde el modelo APOS

  1. Codes Valcarce, Myriam 1
  2. González-Martín, Alejandro S. 2
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  2. 2 University of Montreal
    info

    University of Montreal

    Montreal, Canadá

    ROR https://ror.org/0161xgx34

Journal:
Enseñanza de las ciencias: revista de investigación y experiencias didácticas

ISSN: 0212-4521 2174-6486

Year of publication: 2017

Volume: 35

Issue: 1

Pages: 89-110

Type: Article

DOI: 10.5565/REV/ENSCIENCIAS.1927 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Enseñanza de las ciencias: revista de investigación y experiencias didácticas

Abstract

Learning infinite series entails many difficulties. In this paper, we focus on how students learn one aspect of the concept of infinite series: the sequence of partial sums as an infinite iterative process. The learning process of two groups of first-year university students was analysed using the genetic decomposition of the sequence of partial sums as an infinite iterative process. Different manifestations of action and process conceptions were observed in both groups. The differences in the ways the students grasped the sequence of partial sums reveal the importance of some key mathematical elements for understanding infinite series.

Bibliographic References

  • Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D. y Thomas, K. (1996). A framework for research and development in undergraduate mathematics education. En J. Kaput, A. H. Schoenfeld y E. Dubinsky (eds.). Research in Collegiate Mathematics Education II, Conference Board of the Mathematical Sciences (CBMS) Issues in Mathematics Education, 6, Providence: American Mathematical Society, pp. 1-32. https://doi.org/10.1090/cbmath/006/01
  • Brown, A., McDonald, M. y Weller, K. (2008). Step by step: iterative processes and actual infinity. Conference Board of the Mathematical Sciences (CBMS) Issues in Mathematics Education, 15, pp. 117-144.
  • Codes, M. (2010). Análisis de la comprensión de los conceptos de serie numérica y su convergencia en estudiantes de primer curso de universidad utilizando un entorno computacional. Tesis doctoral. Salamanca: Universidad de Salamanca. Disponible en línea: <http://hdl.handle.net/10366/76452>.
  • Codes, M., Sierra, M. y Raboso, M. (2007). Innovación en la recogida de datos para una investigación de carácter cualitativo. Un ejemplo con alumnos universitarios en un entorno computacional. En M. Camacho, P. Flores, y P. Bolea (eds.). Investigación en Educación Matemática XI. San Cristóbal de La Laguna, Tenerife: SEIEM, pp. 261-271. Disponible en línea: <http://seiem.es/docs/ actas/11/Actas11SEIEM.pdf>.
  • Dreyfus (1991). Advanced mathematical thinking processes. En D. Tall (Ed.), Advanced Mathematical Thinking. Dordrecht: Kluwer Academic Publishers, pp. 25-41.
  • Dubinsky, E. y McDonald, M. A. (2001). APOS: a constructivist theory of learning in undergraduate mathematics education research. En D. Holton (ed.). The teaching and learning of mathematics at university level: An ICMI study. Dordrecht, Países Bajos: Kluwer Academic Publishers, pp. 273-280.
  • Dubinsky, E., Weller, K., McDonald, M. A. y Brown, A. (2005). Some historical issues and paradoxes regarding the concept of infinity: an APOS-based analysis: part II. Educational Studies in Mathematics, 60, pp. 253-266. https://doi.org/10.1007/s10649-005-0473-0
  • Earles, J. S. (2000). Mathematical beliefs and conceptual understanding of the limit of a function. Journal for Research in Mathematics Education, 31(3), pp. 258-276. https://doi.org/10.2307/749807
  • Fernández-Plaza, J. A., Ruiz-Hidalgo, J. F. y Rico, L. (2015). Razonamientos basados en el concepto de límite finito de una función en un punto. Enseñanza de las Ciencias, 33(2), pp. 211-229. Disponible en línea:<http://ensciencias.uab.es/article/view/v33-n2-fernandez-ruiz-rico/1575-pdfes>. https://doi.org/10.5565/rev/ensciencias.1575
  • Fernández-Plaza, J. A., Ruiz-Hidalgo, J. F., Rico, L. y Castro, E. (2013). Definiciones personales y aspectos estructurales del concepto de límite finito de una función en un punto. PNA, 7(3), pp. 117-130. Disponible en línea: <http://digibug.ugr.es/bitstream/10481/23475/1/PNA7%283%293.pdf>.
  • Fischbein, E., Tirosh, D. y Hess, P. (1979). The intuition of infinity. Educational Studies in Mathematics, 10, pp. 3-40. https://doi.org/10.1007/BF00311173
  • Garbín, S. y Azcárate, C. (2002). Infinito actual e inconsistencias: acerca de las incoherencias en los esquemas conceptuales de alumnos de 16-17 años. Enseñanza de las Ciencias, 20(1), pp. 87-113.
  • Herscovics, N. (1989). Cognitive obstacles encountered in the learning of algebra. En S. Wagner y C. Kieran (eds.). Research issues in the learning and teaching of algebra. Reston, VA: National Council of Teachers of Mathematics, pp. 60-86.
  • Kidron, I. (2002). Concept definition, concept image, and the notion of infinite sum in old and new environments. En A. D. Cockburn y E. Nardi (eds.). Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education, vol. 3. Norwich, UK: PME, pp. 209-216.
  • Kidron, I. y Tall, D. (2015). The roles of visualization and symbolism in the potential and actual infinity of the limit process. Educational Studies in Mathematics, 88(2), pp. 183-199. https://doi.org/10.1007/s10649-014-9567-x
  • Knopp, K. (1956). Infinite sequences and series. New York: Dover Publications.
  • Mamona-Downs, J. (2001). Letting the intuitive bear on the formal, a didactical approach for the understanding of the limit of a sequence. Educational Studies in Mathematics, 48, p. 259. https://doi.org/10.1023/A:1016004822476
  • Martínez-Planell, R., González, A. C., DiCristina, G. y V. Acevedo (2012). Students’ conception of infinite series. Educational Studies in Mathematics, 81(2), pp. 235-249. https://doi.org/10.1007/s10649-012-9401-2
  • McDonald, M. A., Mathews, D. M. y Strobel, K. H. (2000). Understanding sequences: A tale of two objects, En E. Dubinsky, A. H. Schoenfeld, y J. Kaput (eds.). Research in Collegiate Mathematics Education. IV. Conference Board of the Mathematical Sciences (CBMS) Issues in Mathematics Education, 8. Providence: American Mathematical Society, pp. 77-102.
  • Monaghan, J. (1991). Problems with the language of limits. For the Learning of Mathematics, 11(3), pp. 20-24.
  • Monaghan, J., Sun, S. y Tall, D. (1994). Construction of the limit concept with a computer algebra system. En J. P. da Ponte y J. F. Matos (eds.). Proceedings of the 18thConference of the International Group for the Psychology of Mathematics Education, vol. 3. Lisboa, Portugal: PME, pp. 279-286.
  • Piaget, J. y García, R. (1982). Psicogénesis e historia de la ciencia. México: Siglo veintiuno editores.
  • Przenioslo, M. (2004). Images of the limit of function formed in the course of mathematical studies at the university. Educational Studies in Mathematics, 55, pp. 103-132. https://doi.org/10.1023/B:EDUC.0000017667.70982.05
  • Roh, K. H. (2008). Students’ images and their understanding of definitions of the limit of a sequence. Educational Studies in Mathematics, 69, pp. 217-233. doi:10.1007/s10649-9128-2
  • Schwarzenberger, R. L. E. y Tall, D. O. (1978). Conflicts in the learning of real numbers and limits, Mathematics Teaching, 82, pp. 44-49.
  • Tall, D., y Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, pp. 151-169. https://doi.org/10.1007/BF00305619
  • Trigueros, M. (2003). El uso de la noción de esquema en el análisis de la solución de problemas complejos. XIX Jornadas del SI-IDM, Córdoba. Disponible en línea: <http://www.ugr.es/local/jgodino/ siidm.htm> (consulta marzo de 2005).
  • Weller, K., Brown, A., Dubinsky, E., McDonald, M. y Stenger, C. (2004). Intimations of infinity. Notices of the American Mathematical Society, 51(7), pp. 741-750.
  • Williams, S. R. (2001). Predications of the limit concept: An application of repertory grids. Journal for Research in Mathematics Education, 32(4), pp. 341-367. https://doi.org/10.2307/749699