Control Óptimo-L2 Basado en Red Mediante Funcionales de Lyapunov-Krasovskii

  1. Pablo Millán 1
  2. Luis Orihuela 1
  3. Carlos Vivas 1
  4. Francisco R. Rubio 1
  1. 1 Universidad de Sevilla
    info

    Universidad de Sevilla

    Sevilla, España

    ROR https://ror.org/03yxnpp24

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2012

Volumen: 9

Número: 1

Páginas: 14-23

Tipo: Artículo

DOI: 10.1016/J.RIAI.2011.11.002 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumen

This paper deals with the problem of optimal control design for linear network control systems (NCS) with L2-gain disturbance rejection. Networked control systems close the control loop using a communication network, that usually accounts for network-induced delays and packet dropouts. Resorting to Lyapunov Krasovskii functionals (LKF), the problem of stabilization of NCS with joint performance index optimization and L2- gain disturbance rejection is addressed. The paper initially develops a general solution for the problem, then an specific LKF is particularized to provide a solution in terms of linear matrix inequalities. Performance of the proposed control structure is shown by simulations comparing with LQR control on an intervehicle distance regulation problem.

Información de financiación

Los autores agradecen al proyecto CICYT (DPI2010-19154), y a la Comisión Europea (EC) (FeedNetBack Project, grant agreement 223866), por financiar este trabajo.

Financiadores

Referencias bibliográficas

  • Azimi-Sadjadi, B., December 2003. Stability of networked control systems in the presence of packet losses. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, Hawaii, USA, pp. 676–681.
  • Branicky, M. S., Borkar, V. S., Mitter, S. K., 1998. A unified framework for hybrid control: model and optimal control theory. IEEE Trans. on Automatic Control 43 (1), 31–45.
  • Delfour, M. C., McCalla, C., Mitter, S. K., 1975. Stability and infinite-time quadratic cost problem for linear hereditary differential systems. SIAM Journal on Control and Optimization 13 (1), 48–88.
  • Dormido, S., Sánchez, J., Kofman, E., 2008. Muestreo, control y comunicación basado en eventos. RIAI Revista Iberoamericana de Automática e Informática Industrial 5 (1), 5–26.
  • El Ghaoui, L., Oustry, F., AitRami, M., 1997. A cone complementary linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control 42 (8), 1171–1176.
  • Esfahani, S. H., Moheimani, S. O. R., Petersen, I. R., 1998. LMI approach to suboptimal guaranteed cost control for uncertain time-delay systems. IEE Proceedings Control Theory and Applications 145 (6), 491–498.
  • Gupta, V., Hassibi, B., Murray, R. M., 2007. Optimal LQG control across packet-dropping links. Systems and Control Letters 56 (6), 439–446.
  • Hale, J. C., Verduyn Lunel, S. M., 1993. Introduction of functional differential equations. Springer, New York.
  • Hespanha, J., Naghshtabrizi, P., Xu, Y., 2007. A survey of recent results in networked control systems. Proceedings of the IEEE, special edition 95 (1), 138–162.
  • Hokayem, P. F., Abdallah, C. T., June 2004. Inherent issues in networked control systems: a survey. In: Proceedings of the American Control Conference. Boston, Massachusetts, USA, pp. 4897–4902.
  • Jiang, X., Han, Q. L., 2008. New stability criteria for linear systems with interval time-varying delay. Automatica 44 (10), 2680–2685.
  • Jiang, X., Han, Q. L., Liu, S., Xue, A., 2008. A new H∞ stabilization criterion for networked control systems. IEEE Transactions on Automatic Control 53 (4), 1025–1032.
  • Kharatishvili, G. L., 1961. The maximum principle in the theory of optimal processes with delay (in russian). Dokl. Akad. Nauk. SSSR 136 (1), 39–42.
  • Kosmidou, O. I., Boutalis, Y. S., 2006. A linear matrix inequality approach for guaranteed cost control of systems with state and input delays. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 36 (5), 936–942.
  • Krasovskii, N., 1962. On analytic design of optimal controllers for systems with time delay. Prikl. matem. i mekh. 26 (1), 39–51.
  • Mahmoud, M. S., 2000. Robust Control and Filtering for Time-delay Systems. Marcel Dekker, Inc., New York.
  • Meng, X., Lam, J., Gao, H., 2009. Network-based H∞ control for stochastic systems. International Journal of Robust and Nonlinear Control 19 (3), 295– 312.
  • Mikheev, Y. V., Sobolev, V. A., Fridman, E., 1988. Asymptotic analysis of digital control systems. Automatic and Remote Control 49, 1175–1180.
  • Naghshtabrizi, P., Hespanha, J., December 2005. Designing an observer-based controller for a network control system. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. Seville, Spain, pp. 848–853.
  • Nikolakopoulos, G., Panousopoulou, A., Tzes, A., 2008. Experimental controller tuning and QoS optimization of a wireless transmission scheme for realtime remote control applications. Control Engineering Practice 16 (3), 333– 346.
  • Ross, D. W., Flügge-Lotz, I., 1969. An optimal control problem for systems with differential difference equation dynamics. SIAM Journal On Control and Optimization 7 (4), 609–623.
  • Salt, J., Casanova, V., Cuenca, A., Pizá, R., 2008. Sistemas de control basados en red. modelado y diseño de estructuras de control. RIAI Revista Iberoamericana de Automática e Informática Industrial 5 (3), 5–20.
  • Shao, H., 2009. New delay-dependent stability criteria for systems with interval delay. Automatica 45 (3), 744–749.
  • Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Sastry, S., December 2005. An LQG optimal linear controller for control systems with packet losses. In: 44th IEEE Conference on Decision and Control and the European Control Conference. Sevilla, Spain, pp. 458–463.
  • Tatikonda, S., Mitter, S., 2004. Control under communication constraints. IEEE Transactions on Automatic Control 49 (7), 1056–1068.
  • Xiong, J., Lam, J., 2007. Stabilization of linear systems over networks with bounded packet loss. Automatica 43 (1), 80–87.
  • Xu, S., Lam, J., 2007. On equivalence and efficiency of certain stability criteria for time-delay systems. IEEE Transactions on Automatic Control 52 (1), 95–101.
  • Xu, S., Lam, J., 2008. A survey of linear matrix inequality techniques in stability analysis of delay systems. International Journal of Systems Science 39 (12), 1095–1113.
  • Yue, D., Han, Q. L., Lam, J., 2005. Network-based robust H∞ control of systems with uncertainty. Automatica 41 (6), 999–1007.
  • Zampieri, S., July 2008. Trends in networked control systems. In: Proceedings of the 17th World Congress IFAC. Seoul, Korea, pp. 2886–2894.
  • Zhang, D., Yu, L., 2008. Equivalence of some stability criteria for linear timedelay systems. Applied Mathematics and Computation 202 (1), 395–400.
  • Zhang, H. S., Duan, G., Xie, L., 2006. Linear quadratic regulation for linear time varying systems with multiple input delays. Automatica 42 (9), 1465– 1476.